zhenxun_bot/zhenxun/services/llm/config/providers.py

329 lines
9.9 KiB
Python
Raw Normal View History

2025-07-01 16:56:34 +08:00
"""
LLM 提供商配置管理
负责注册和管理 AI 服务提供商的配置项
"""
from typing import Any
from pydantic import BaseModel, Field
from zhenxun.configs.config import Config
from zhenxun.services.log import logger
from ..types.models import ModelDetail, ProviderConfig
AI_CONFIG_GROUP = "AI"
PROVIDERS_CONFIG_KEY = "PROVIDERS"
class LLMConfig(BaseModel):
"""LLM 服务配置类"""
default_model_name: str | None = Field(
default=None,
description="LLM服务全局默认使用的模型名称 (格式: ProviderName/ModelName)",
)
proxy: str | None = Field(
default=None,
description="LLM服务请求使用的网络代理例如 http://127.0.0.1:7890",
)
timeout: int = Field(default=180, description="LLM服务API请求超时时间")
max_retries_llm: int = Field(
default=3, description="LLM服务请求失败时的最大重试次数"
)
retry_delay_llm: int = Field(
default=2, description="LLM服务请求重试的基础延迟时间"
)
providers: list[ProviderConfig] = Field(
default_factory=list, description="配置多个 AI 服务提供商及其模型信息"
)
def get_provider_by_name(self, name: str) -> ProviderConfig | None:
"""根据名称获取提供商配置
参数:
name: 提供商名称
返回:
ProviderConfig | None: 提供商配置如果未找到则返回 None
"""
for provider in self.providers:
if provider.name == name:
return provider
return None
def get_model_by_provider_and_name(
self, provider_name: str, model_name: str
) -> tuple[ProviderConfig, ModelDetail] | None:
"""根据提供商名称和模型名称获取配置
参数:
provider_name: 提供商名称
model_name: 模型名称
返回:
tuple[ProviderConfig, ModelDetail] | None: 提供商配置和模型详情的元组
如果未找到则返回 None
"""
provider = self.get_provider_by_name(provider_name)
if not provider:
return None
for model in provider.models:
if model.model_name == model_name:
return provider, model
return None
def list_available_models(self) -> list[dict[str, Any]]:
"""列出所有可用的模型
返回:
list[dict[str, Any]]: 模型信息列表
"""
models = []
for provider in self.providers:
for model in provider.models:
models.append(
{
"provider_name": provider.name,
"model_name": model.model_name,
"full_name": f"{provider.name}/{model.model_name}",
"is_available": model.is_available,
"is_embedding_model": model.is_embedding_model,
"api_type": provider.api_type,
}
)
return models
def validate_model_name(self, provider_model_name: str) -> bool:
"""验证模型名称格式是否正确
参数:
provider_model_name: 格式为 "ProviderName/ModelName" 的字符串
返回:
bool: 是否有效
"""
if not provider_model_name or "/" not in provider_model_name:
return False
parts = provider_model_name.split("/", 1)
if len(parts) != 2:
return False
provider_name, model_name = parts
return (
self.get_model_by_provider_and_name(provider_name, model_name) is not None
)
def get_ai_config():
"""获取 AI 配置组"""
return Config.get(AI_CONFIG_GROUP)
def get_default_providers() -> list[dict[str, Any]]:
"""获取默认的提供商配置
返回:
list[dict[str, Any]]: 默认提供商配置列表
"""
return [
{
"name": "DeepSeek",
"api_key": "sk-******",
"api_base": "https://api.deepseek.com",
"api_type": "openai",
"models": [
{
"model_name": "deepseek-chat",
"max_tokens": 4096,
"temperature": 0.7,
},
{
"model_name": "deepseek-reasoner",
},
],
},
{
"name": "GLM",
"api_key": "",
"api_base": "https://open.bigmodel.cn",
"api_type": "zhipu",
"models": [
{"model_name": "glm-4-flash"},
{"model_name": "glm-4-plus"},
],
},
{
"name": "Gemini",
"api_key": [
"AIzaSy*****************************",
"AIzaSy*****************************",
"AIzaSy*****************************",
],
"api_base": "https://generativelanguage.googleapis.com",
"api_type": "gemini",
"models": [
{"model_name": "gemini-2.0-flash"},
{"model_name": "gemini-2.5-flash-preview-05-20"},
],
},
]
def register_llm_configs():
"""注册 LLM 服务的配置项"""
logger.info("注册 LLM 服务的配置项")
llm_config = LLMConfig()
Config.add_plugin_config(
AI_CONFIG_GROUP,
"default_model_name",
llm_config.default_model_name,
help="LLM服务全局默认使用的模型名称 (格式: ProviderName/ModelName)",
type=str,
)
Config.add_plugin_config(
AI_CONFIG_GROUP,
"proxy",
llm_config.proxy,
help="LLM服务请求使用的网络代理例如 http://127.0.0.1:7890",
type=str,
)
Config.add_plugin_config(
AI_CONFIG_GROUP,
"timeout",
llm_config.timeout,
help="LLM服务API请求超时时间",
type=int,
)
Config.add_plugin_config(
AI_CONFIG_GROUP,
"max_retries_llm",
llm_config.max_retries_llm,
help="LLM服务请求失败时的最大重试次数",
type=int,
)
Config.add_plugin_config(
AI_CONFIG_GROUP,
"retry_delay_llm",
llm_config.retry_delay_llm,
help="LLM服务请求重试的基础延迟时间",
type=int,
)
Config.add_plugin_config(
AI_CONFIG_GROUP,
PROVIDERS_CONFIG_KEY,
get_default_providers(),
help="配置多个 AI 服务提供商及其模型信息",
default_value=[],
type=list[ProviderConfig],
)
def get_llm_config() -> LLMConfig:
"""获取 LLM 配置实例
返回:
LLMConfig: LLM 配置实例
"""
ai_config = get_ai_config()
config_data = {
"default_model_name": ai_config.get("default_model_name"),
"proxy": ai_config.get("proxy"),
"timeout": ai_config.get("timeout", 180),
"max_retries_llm": ai_config.get("max_retries_llm", 3),
"retry_delay_llm": ai_config.get("retry_delay_llm", 2),
"providers": ai_config.get(PROVIDERS_CONFIG_KEY, []),
}
return LLMConfig(**config_data)
def validate_llm_config() -> tuple[bool, list[str]]:
"""验证 LLM 配置的有效性
返回:
tuple[bool, list[str]]: (是否有效, 错误信息列表)
"""
errors = []
try:
llm_config = get_llm_config()
if llm_config.timeout <= 0:
errors.append("timeout 必须大于 0")
if llm_config.max_retries_llm < 0:
errors.append("max_retries_llm 不能小于 0")
if llm_config.retry_delay_llm <= 0:
errors.append("retry_delay_llm 必须大于 0")
if not llm_config.providers:
errors.append("至少需要配置一个 AI 服务提供商")
else:
provider_names = set()
for provider in llm_config.providers:
if provider.name in provider_names:
errors.append(f"提供商名称重复: {provider.name}")
provider_names.add(provider.name)
if not provider.api_key:
errors.append(f"提供商 {provider.name} 缺少 API Key")
if not provider.models:
errors.append(f"提供商 {provider.name} 没有配置任何模型")
else:
model_names = set()
for model in provider.models:
if model.model_name in model_names:
errors.append(
f"提供商 {provider.name} 中模型名称重复: "
f"{model.model_name}"
)
model_names.add(model.model_name)
if llm_config.default_model_name:
if not llm_config.validate_model_name(llm_config.default_model_name):
errors.append(
f"默认模型 {llm_config.default_model_name} 在配置中不存在"
)
except Exception as e:
errors.append(f"配置解析失败: {e!s}")
return len(errors) == 0, errors
def set_default_model(provider_model_name: str | None) -> bool:
"""设置默认模型
参数:
provider_model_name: 模型名称格式为 "ProviderName/ModelName"None 表示清除
返回:
bool: 是否设置成功
"""
if provider_model_name:
llm_config = get_llm_config()
if not llm_config.validate_model_name(provider_model_name):
logger.error(f"模型 {provider_model_name} 在配置中不存在")
return False
Config.set_config(
AI_CONFIG_GROUP, "default_model_name", provider_model_name, auto_save=True
)
if provider_model_name:
logger.info(f"默认模型已设置为: {provider_model_name}")
else:
logger.info("默认模型已清除")
return True