2025-06-21 16:33:21 +08:00
|
|
|
|
"""
|
|
|
|
|
|
Gemini API 适配器
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
2025-10-01 18:41:46 +08:00
|
|
|
|
import base64
|
2025-06-21 16:33:21 +08:00
|
|
|
|
from typing import TYPE_CHECKING, Any
|
|
|
|
|
|
|
|
|
|
|
|
from zhenxun.services.log import logger
|
|
|
|
|
|
|
|
|
|
|
|
from ..types.exceptions import LLMErrorCode, LLMException
|
2025-08-04 23:36:12 +08:00
|
|
|
|
from ..utils import sanitize_schema_for_llm
|
2025-06-21 16:33:21 +08:00
|
|
|
|
from .base import BaseAdapter, RequestData, ResponseData
|
|
|
|
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
|
|
from ..config.generation import LLMGenerationConfig
|
|
|
|
|
|
from ..service import LLMModel
|
|
|
|
|
|
from ..types.content import LLMMessage
|
|
|
|
|
|
from ..types.enums import EmbeddingTaskType
|
2025-08-04 23:36:12 +08:00
|
|
|
|
from ..types.models import LLMToolCall
|
|
|
|
|
|
from ..types.protocols import ToolExecutable
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GeminiAdapter(BaseAdapter):
|
|
|
|
|
|
"""Gemini API 适配器"""
|
|
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
|
def api_type(self) -> str:
|
|
|
|
|
|
return "gemini"
|
|
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
|
def supported_api_types(self) -> list[str]:
|
|
|
|
|
|
return ["gemini"]
|
|
|
|
|
|
|
|
|
|
|
|
def get_base_headers(self, api_key: str) -> dict[str, str]:
|
|
|
|
|
|
"""获取基础请求头"""
|
|
|
|
|
|
from zhenxun.utils.user_agent import get_user_agent
|
|
|
|
|
|
|
|
|
|
|
|
headers = get_user_agent()
|
|
|
|
|
|
headers.update({"Content-Type": "application/json"})
|
|
|
|
|
|
headers["x-goog-api-key"] = api_key
|
|
|
|
|
|
|
|
|
|
|
|
return headers
|
|
|
|
|
|
|
2025-07-08 11:15:15 +08:00
|
|
|
|
async def prepare_advanced_request(
|
2025-06-21 16:33:21 +08:00
|
|
|
|
self,
|
|
|
|
|
|
model: "LLMModel",
|
|
|
|
|
|
api_key: str,
|
|
|
|
|
|
messages: list["LLMMessage"],
|
|
|
|
|
|
config: "LLMGenerationConfig | None" = None,
|
2025-08-04 23:36:12 +08:00
|
|
|
|
tools: dict[str, "ToolExecutable"] | None = None,
|
2025-06-21 16:33:21 +08:00
|
|
|
|
tool_choice: str | dict[str, Any] | None = None,
|
|
|
|
|
|
) -> RequestData:
|
|
|
|
|
|
"""准备高级请求"""
|
|
|
|
|
|
effective_config = config if config is not None else model._generation_config
|
|
|
|
|
|
|
|
|
|
|
|
endpoint = self._get_gemini_endpoint(model, effective_config)
|
|
|
|
|
|
url = self.get_api_url(model, endpoint)
|
|
|
|
|
|
headers = self.get_base_headers(api_key)
|
|
|
|
|
|
|
|
|
|
|
|
gemini_contents: list[dict[str, Any]] = []
|
|
|
|
|
|
system_instruction_parts: list[dict[str, Any]] | None = None
|
|
|
|
|
|
|
|
|
|
|
|
for msg in messages:
|
|
|
|
|
|
current_parts: list[dict[str, Any]] = []
|
|
|
|
|
|
if msg.role == "system":
|
|
|
|
|
|
if isinstance(msg.content, str):
|
|
|
|
|
|
system_instruction_parts = [{"text": msg.content}]
|
|
|
|
|
|
elif isinstance(msg.content, list):
|
|
|
|
|
|
system_instruction_parts = [
|
2025-07-08 11:15:15 +08:00
|
|
|
|
await part.convert_for_api_async("gemini")
|
|
|
|
|
|
for part in msg.content
|
2025-06-21 16:33:21 +08:00
|
|
|
|
]
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
elif msg.role == "user":
|
|
|
|
|
|
if isinstance(msg.content, str):
|
|
|
|
|
|
current_parts.append({"text": msg.content})
|
|
|
|
|
|
elif isinstance(msg.content, list):
|
|
|
|
|
|
for part_obj in msg.content:
|
2025-07-08 11:15:15 +08:00
|
|
|
|
current_parts.append(
|
|
|
|
|
|
await part_obj.convert_for_api_async("gemini")
|
|
|
|
|
|
)
|
2025-06-21 16:33:21 +08:00
|
|
|
|
gemini_contents.append({"role": "user", "parts": current_parts})
|
|
|
|
|
|
|
|
|
|
|
|
elif msg.role == "assistant" or msg.role == "model":
|
|
|
|
|
|
if isinstance(msg.content, str) and msg.content:
|
|
|
|
|
|
current_parts.append({"text": msg.content})
|
|
|
|
|
|
elif isinstance(msg.content, list):
|
|
|
|
|
|
for part_obj in msg.content:
|
2025-07-08 11:15:15 +08:00
|
|
|
|
current_parts.append(
|
|
|
|
|
|
await part_obj.convert_for_api_async("gemini")
|
|
|
|
|
|
)
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
|
|
|
|
|
if msg.tool_calls:
|
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
|
|
for call in msg.tool_calls:
|
|
|
|
|
|
current_parts.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"functionCall": {
|
|
|
|
|
|
"name": call.function.name,
|
|
|
|
|
|
"args": json.loads(call.function.arguments),
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
if current_parts:
|
|
|
|
|
|
gemini_contents.append({"role": "model", "parts": current_parts})
|
|
|
|
|
|
|
|
|
|
|
|
elif msg.role == "tool":
|
|
|
|
|
|
if not msg.name:
|
|
|
|
|
|
raise ValueError("Gemini 工具消息必须包含 'name' 字段(函数名)。")
|
|
|
|
|
|
|
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
content_str = (
|
|
|
|
|
|
msg.content
|
|
|
|
|
|
if isinstance(msg.content, str)
|
|
|
|
|
|
else str(msg.content)
|
|
|
|
|
|
)
|
|
|
|
|
|
tool_result_obj = json.loads(content_str)
|
|
|
|
|
|
except json.JSONDecodeError:
|
|
|
|
|
|
content_str = (
|
|
|
|
|
|
msg.content
|
|
|
|
|
|
if isinstance(msg.content, str)
|
|
|
|
|
|
else str(msg.content)
|
|
|
|
|
|
)
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"工具 {msg.name} 的结果不是有效的 JSON: {content_str}. "
|
|
|
|
|
|
f"包装为原始字符串。"
|
|
|
|
|
|
)
|
|
|
|
|
|
tool_result_obj = {"raw_output": content_str}
|
|
|
|
|
|
|
2025-08-04 23:36:12 +08:00
|
|
|
|
if isinstance(tool_result_obj, list):
|
|
|
|
|
|
logger.debug(
|
|
|
|
|
|
f"工具 '{msg.name}' 的返回结果是列表,"
|
|
|
|
|
|
f"正在为Gemini API包装为JSON对象。"
|
|
|
|
|
|
)
|
|
|
|
|
|
final_response_payload = {"result": tool_result_obj}
|
|
|
|
|
|
elif not isinstance(tool_result_obj, dict):
|
|
|
|
|
|
final_response_payload = {"result": tool_result_obj}
|
|
|
|
|
|
else:
|
|
|
|
|
|
final_response_payload = tool_result_obj
|
|
|
|
|
|
|
2025-06-21 16:33:21 +08:00
|
|
|
|
current_parts.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"functionResponse": {
|
|
|
|
|
|
"name": msg.name,
|
2025-08-04 23:36:12 +08:00
|
|
|
|
"response": final_response_payload,
|
2025-06-21 16:33:21 +08:00
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
gemini_contents.append({"role": "function", "parts": current_parts})
|
|
|
|
|
|
|
|
|
|
|
|
body: dict[str, Any] = {"contents": gemini_contents}
|
|
|
|
|
|
|
|
|
|
|
|
if system_instruction_parts:
|
|
|
|
|
|
body["systemInstruction"] = {"parts": system_instruction_parts}
|
|
|
|
|
|
|
|
|
|
|
|
all_tools_for_request = []
|
|
|
|
|
|
if tools:
|
2025-08-04 23:36:12 +08:00
|
|
|
|
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
from zhenxun.utils.pydantic_compat import model_dump
|
|
|
|
|
|
|
|
|
|
|
|
definition_tasks = [
|
|
|
|
|
|
executable.get_definition() for executable in tools.values()
|
|
|
|
|
|
]
|
|
|
|
|
|
tool_definitions = await asyncio.gather(*definition_tasks)
|
|
|
|
|
|
|
|
|
|
|
|
function_declarations = []
|
|
|
|
|
|
for tool_def in tool_definitions:
|
|
|
|
|
|
tool_def.parameters = sanitize_schema_for_llm(
|
|
|
|
|
|
tool_def.parameters, api_type="gemini"
|
|
|
|
|
|
)
|
|
|
|
|
|
function_declarations.append(model_dump(tool_def))
|
|
|
|
|
|
|
|
|
|
|
|
if function_declarations:
|
|
|
|
|
|
all_tools_for_request.append(
|
|
|
|
|
|
{"functionDeclarations": function_declarations}
|
|
|
|
|
|
)
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
|
|
|
|
|
if effective_config:
|
|
|
|
|
|
if getattr(effective_config, "enable_grounding", False):
|
|
|
|
|
|
has_explicit_gs_tool = any(
|
|
|
|
|
|
"googleSearch" in tool_item for tool_item in all_tools_for_request
|
|
|
|
|
|
)
|
|
|
|
|
|
if not has_explicit_gs_tool:
|
|
|
|
|
|
all_tools_for_request.append({"googleSearch": {}})
|
|
|
|
|
|
logger.debug("隐式启用 Google Search 工具进行信息来源关联。")
|
|
|
|
|
|
|
|
|
|
|
|
if getattr(effective_config, "enable_code_execution", False):
|
|
|
|
|
|
has_explicit_ce_tool = any(
|
|
|
|
|
|
"codeExecution" in tool_item for tool_item in all_tools_for_request
|
|
|
|
|
|
)
|
|
|
|
|
|
if not has_explicit_ce_tool:
|
|
|
|
|
|
all_tools_for_request.append({"codeExecution": {}})
|
|
|
|
|
|
logger.debug("隐式启用代码执行工具。")
|
|
|
|
|
|
|
|
|
|
|
|
if all_tools_for_request:
|
2025-07-08 11:15:15 +08:00
|
|
|
|
body["tools"] = all_tools_for_request
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
|
|
|
|
|
final_tool_choice = tool_choice
|
|
|
|
|
|
if final_tool_choice is None and effective_config:
|
|
|
|
|
|
final_tool_choice = getattr(effective_config, "tool_choice", None)
|
|
|
|
|
|
|
|
|
|
|
|
if final_tool_choice:
|
|
|
|
|
|
if isinstance(final_tool_choice, str):
|
|
|
|
|
|
mode_upper = final_tool_choice.upper()
|
|
|
|
|
|
if mode_upper in ["AUTO", "NONE", "ANY"]:
|
|
|
|
|
|
body["toolConfig"] = {"functionCallingConfig": {"mode": mode_upper}}
|
|
|
|
|
|
else:
|
|
|
|
|
|
body["toolConfig"] = self._convert_tool_choice_to_gemini(
|
|
|
|
|
|
final_tool_choice
|
|
|
|
|
|
)
|
|
|
|
|
|
else:
|
|
|
|
|
|
body["toolConfig"] = self._convert_tool_choice_to_gemini(
|
|
|
|
|
|
final_tool_choice
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
final_generation_config = self._build_gemini_generation_config(
|
|
|
|
|
|
model, effective_config
|
|
|
|
|
|
)
|
|
|
|
|
|
if final_generation_config:
|
|
|
|
|
|
body["generationConfig"] = final_generation_config
|
|
|
|
|
|
|
|
|
|
|
|
safety_settings = self._build_safety_settings(effective_config)
|
|
|
|
|
|
if safety_settings:
|
|
|
|
|
|
body["safetySettings"] = safety_settings
|
|
|
|
|
|
|
|
|
|
|
|
return RequestData(url=url, headers=headers, body=body)
|
|
|
|
|
|
|
|
|
|
|
|
def apply_config_override(
|
|
|
|
|
|
self,
|
|
|
|
|
|
model: "LLMModel",
|
|
|
|
|
|
body: dict[str, Any],
|
|
|
|
|
|
config: "LLMGenerationConfig | None" = None,
|
|
|
|
|
|
) -> dict[str, Any]:
|
|
|
|
|
|
"""应用配置覆盖 - Gemini 不需要额外的配置覆盖"""
|
|
|
|
|
|
return body
|
|
|
|
|
|
|
|
|
|
|
|
def _get_gemini_endpoint(
|
|
|
|
|
|
self, model: "LLMModel", config: "LLMGenerationConfig | None" = None
|
|
|
|
|
|
) -> str:
|
|
|
|
|
|
"""根据配置选择Gemini API端点"""
|
|
|
|
|
|
if config:
|
|
|
|
|
|
if getattr(config, "enable_code_execution", False):
|
|
|
|
|
|
return f"/v1beta/models/{model.model_name}:generateContent"
|
|
|
|
|
|
|
|
|
|
|
|
if getattr(config, "enable_grounding", False):
|
|
|
|
|
|
return f"/v1beta/models/{model.model_name}:generateContent"
|
|
|
|
|
|
|
|
|
|
|
|
return f"/v1beta/models/{model.model_name}:generateContent"
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_tool_choice_to_gemini(
|
|
|
|
|
|
self, tool_choice_value: str | dict[str, Any]
|
|
|
|
|
|
) -> dict[str, Any]:
|
|
|
|
|
|
"""转换工具选择策略为Gemini格式"""
|
|
|
|
|
|
if isinstance(tool_choice_value, str):
|
|
|
|
|
|
mode_upper = tool_choice_value.upper()
|
|
|
|
|
|
if mode_upper in ["AUTO", "NONE", "ANY"]:
|
|
|
|
|
|
return {"functionCallingConfig": {"mode": mode_upper}}
|
|
|
|
|
|
else:
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"不支持的 tool_choice 字符串值: '{tool_choice_value}'。"
|
|
|
|
|
|
f"回退到 AUTO。"
|
|
|
|
|
|
)
|
|
|
|
|
|
return {"functionCallingConfig": {"mode": "AUTO"}}
|
|
|
|
|
|
|
|
|
|
|
|
elif isinstance(tool_choice_value, dict):
|
|
|
|
|
|
if (
|
|
|
|
|
|
tool_choice_value.get("type") == "function"
|
|
|
|
|
|
and "function" in tool_choice_value
|
|
|
|
|
|
):
|
|
|
|
|
|
func_name = tool_choice_value["function"].get("name")
|
|
|
|
|
|
if func_name:
|
|
|
|
|
|
return {
|
|
|
|
|
|
"functionCallingConfig": {
|
|
|
|
|
|
"mode": "ANY",
|
|
|
|
|
|
"allowedFunctionNames": [func_name],
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
else:
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"tool_choice dict 中的函数名无效: {tool_choice_value}。"
|
|
|
|
|
|
f"回退到 AUTO。"
|
|
|
|
|
|
)
|
|
|
|
|
|
return {"functionCallingConfig": {"mode": "AUTO"}}
|
|
|
|
|
|
|
|
|
|
|
|
elif "functionCallingConfig" in tool_choice_value:
|
|
|
|
|
|
return {
|
|
|
|
|
|
"functionCallingConfig": tool_choice_value["functionCallingConfig"]
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"不支持的 tool_choice dict 值: {tool_choice_value}。回退到 AUTO。"
|
|
|
|
|
|
)
|
|
|
|
|
|
return {"functionCallingConfig": {"mode": "AUTO"}}
|
|
|
|
|
|
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"tool_choice 的类型无效: {type(tool_choice_value)}。回退到 AUTO。"
|
|
|
|
|
|
)
|
|
|
|
|
|
return {"functionCallingConfig": {"mode": "AUTO"}}
|
|
|
|
|
|
|
|
|
|
|
|
def _build_gemini_generation_config(
|
|
|
|
|
|
self, model: "LLMModel", config: "LLMGenerationConfig | None" = None
|
|
|
|
|
|
) -> dict[str, Any]:
|
|
|
|
|
|
"""构建Gemini生成配置"""
|
|
|
|
|
|
effective_config = config if config is not None else model._generation_config
|
|
|
|
|
|
|
2025-08-04 23:36:12 +08:00
|
|
|
|
if not effective_config:
|
|
|
|
|
|
return {}
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
2025-08-04 23:36:12 +08:00
|
|
|
|
generation_config = effective_config.to_api_params(
|
|
|
|
|
|
api_type="gemini", model_name=model.model_name
|
|
|
|
|
|
)
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
2025-08-04 23:36:12 +08:00
|
|
|
|
if generation_config:
|
|
|
|
|
|
param_keys = list(generation_config.keys())
|
|
|
|
|
|
logger.debug(
|
|
|
|
|
|
f"构建Gemini生成配置完成,包含 {len(generation_config)} 个参数: "
|
|
|
|
|
|
f"{param_keys}"
|
|
|
|
|
|
)
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
|
|
|
|
|
return generation_config
|
|
|
|
|
|
|
|
|
|
|
|
def _build_safety_settings(
|
|
|
|
|
|
self, config: "LLMGenerationConfig | None" = None
|
|
|
|
|
|
) -> list[dict[str, Any]] | None:
|
|
|
|
|
|
"""构建安全设置"""
|
|
|
|
|
|
if not config:
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
safety_settings = []
|
|
|
|
|
|
|
|
|
|
|
|
safety_categories = [
|
|
|
|
|
|
"HARM_CATEGORY_HARASSMENT",
|
|
|
|
|
|
"HARM_CATEGORY_HATE_SPEECH",
|
|
|
|
|
|
"HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
|
|
|
|
"HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
custom_safety_settings = getattr(config, "safety_settings", None)
|
|
|
|
|
|
if custom_safety_settings:
|
|
|
|
|
|
for category, threshold in custom_safety_settings.items():
|
|
|
|
|
|
safety_settings.append({"category": category, "threshold": threshold})
|
|
|
|
|
|
else:
|
2025-07-08 11:15:15 +08:00
|
|
|
|
from ..config.providers import get_gemini_safety_threshold
|
|
|
|
|
|
|
|
|
|
|
|
threshold = get_gemini_safety_threshold()
|
2025-06-21 16:33:21 +08:00
|
|
|
|
for category in safety_categories:
|
2025-07-08 11:15:15 +08:00
|
|
|
|
safety_settings.append({"category": category, "threshold": threshold})
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
|
|
|
|
|
return safety_settings if safety_settings else None
|
|
|
|
|
|
|
2025-11-26 14:13:19 +08:00
|
|
|
|
def validate_response(self, response_json: dict[str, Any]) -> None:
|
|
|
|
|
|
"""验证 Gemini API 响应,增加对 promptFeedback 的检查"""
|
|
|
|
|
|
super().validate_response(response_json)
|
|
|
|
|
|
|
|
|
|
|
|
if prompt_feedback := response_json.get("promptFeedback"):
|
|
|
|
|
|
if block_reason := prompt_feedback.get("blockReason"):
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"Gemini 内容因 promptFeedback 被安全过滤: {block_reason}"
|
|
|
|
|
|
)
|
|
|
|
|
|
raise LLMException(
|
|
|
|
|
|
f"内容被安全过滤: {block_reason}",
|
|
|
|
|
|
code=LLMErrorCode.CONTENT_FILTERED,
|
|
|
|
|
|
details={
|
|
|
|
|
|
"block_reason": block_reason,
|
|
|
|
|
|
"safety_ratings": prompt_feedback.get("safetyRatings"),
|
|
|
|
|
|
},
|
|
|
|
|
|
)
|
|
|
|
|
|
|
2025-06-21 16:33:21 +08:00
|
|
|
|
def parse_response(
|
|
|
|
|
|
self,
|
|
|
|
|
|
model: "LLMModel",
|
|
|
|
|
|
response_json: dict[str, Any],
|
|
|
|
|
|
is_advanced: bool = False,
|
|
|
|
|
|
) -> ResponseData:
|
|
|
|
|
|
"""解析API响应"""
|
|
|
|
|
|
return self._parse_response(model, response_json, is_advanced)
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_response(
|
|
|
|
|
|
self,
|
|
|
|
|
|
model: "LLMModel",
|
|
|
|
|
|
response_json: dict[str, Any],
|
|
|
|
|
|
is_advanced: bool = False,
|
|
|
|
|
|
) -> ResponseData:
|
|
|
|
|
|
"""解析 Gemini API 响应"""
|
|
|
|
|
|
_ = is_advanced
|
|
|
|
|
|
self.validate_response(response_json)
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
2025-10-01 18:41:46 +08:00
|
|
|
|
if "image_generation" in response_json and isinstance(
|
|
|
|
|
|
response_json["image_generation"], dict
|
|
|
|
|
|
):
|
|
|
|
|
|
candidates_source = response_json["image_generation"]
|
|
|
|
|
|
else:
|
|
|
|
|
|
candidates_source = response_json
|
|
|
|
|
|
|
|
|
|
|
|
candidates = candidates_source.get("candidates", [])
|
|
|
|
|
|
usage_info = response_json.get("usageMetadata")
|
|
|
|
|
|
|
2025-06-21 16:33:21 +08:00
|
|
|
|
if not candidates:
|
|
|
|
|
|
logger.debug("Gemini响应中没有candidates。")
|
|
|
|
|
|
return ResponseData(text="", raw_response=response_json)
|
|
|
|
|
|
|
|
|
|
|
|
candidate = candidates[0]
|
|
|
|
|
|
|
|
|
|
|
|
if candidate.get("finishReason") in [
|
|
|
|
|
|
"RECITATION",
|
|
|
|
|
|
"OTHER",
|
|
|
|
|
|
] and not candidate.get("content"):
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"Gemini candidate finished with reason "
|
|
|
|
|
|
f"'{candidate.get('finishReason')}' and no content."
|
|
|
|
|
|
)
|
|
|
|
|
|
return ResponseData(
|
|
|
|
|
|
text="",
|
|
|
|
|
|
raw_response=response_json,
|
|
|
|
|
|
usage_info=response_json.get("usageMetadata"),
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
content_data = candidate.get("content", {})
|
|
|
|
|
|
parts = content_data.get("parts", [])
|
|
|
|
|
|
|
|
|
|
|
|
text_content = ""
|
2025-10-09 08:50:40 +08:00
|
|
|
|
images_bytes: list[bytes] = []
|
2025-06-21 16:33:21 +08:00
|
|
|
|
parsed_tool_calls: list["LLMToolCall"] | None = None
|
2025-08-04 23:36:12 +08:00
|
|
|
|
thought_summary_parts = []
|
|
|
|
|
|
answer_parts = []
|
2025-06-21 16:33:21 +08:00
|
|
|
|
|
|
|
|
|
|
for part in parts:
|
|
|
|
|
|
if "text" in part:
|
2025-08-04 23:36:12 +08:00
|
|
|
|
answer_parts.append(part["text"])
|
|
|
|
|
|
elif "thought" in part:
|
|
|
|
|
|
thought_summary_parts.append(part["thought"])
|
|
|
|
|
|
elif "thoughtSummary" in part:
|
|
|
|
|
|
thought_summary_parts.append(part["thoughtSummary"])
|
2025-10-01 18:41:46 +08:00
|
|
|
|
elif "inlineData" in part:
|
|
|
|
|
|
inline_data = part["inlineData"]
|
|
|
|
|
|
if "data" in inline_data:
|
2025-10-09 08:50:40 +08:00
|
|
|
|
images_bytes.append(base64.b64decode(inline_data["data"]))
|
2025-10-01 18:41:46 +08:00
|
|
|
|
|
2025-06-21 16:33:21 +08:00
|
|
|
|
elif "functionCall" in part:
|
|
|
|
|
|
if parsed_tool_calls is None:
|
|
|
|
|
|
parsed_tool_calls = []
|
|
|
|
|
|
fc_data = part["functionCall"]
|
|
|
|
|
|
try:
|
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
|
|
from ..types.models import LLMToolCall, LLMToolFunction
|
|
|
|
|
|
|
|
|
|
|
|
call_id = f"call_{model.provider_name}_{len(parsed_tool_calls)}"
|
|
|
|
|
|
parsed_tool_calls.append(
|
|
|
|
|
|
LLMToolCall(
|
|
|
|
|
|
id=call_id,
|
|
|
|
|
|
function=LLMToolFunction(
|
|
|
|
|
|
name=fc_data["name"],
|
|
|
|
|
|
arguments=json.dumps(fc_data["args"]),
|
|
|
|
|
|
),
|
|
|
|
|
|
)
|
|
|
|
|
|
)
|
|
|
|
|
|
except KeyError as e:
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"解析Gemini functionCall时缺少键: {fc_data}, 错误: {e}"
|
|
|
|
|
|
)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.warning(
|
|
|
|
|
|
f"解析Gemini functionCall时出错: {fc_data}, 错误: {e}"
|
|
|
|
|
|
)
|
|
|
|
|
|
elif "codeExecutionResult" in part:
|
|
|
|
|
|
result = part["codeExecutionResult"]
|
|
|
|
|
|
if result.get("outcome") == "OK":
|
|
|
|
|
|
output = result.get("output", "")
|
2025-08-04 23:36:12 +08:00
|
|
|
|
answer_parts.append(f"\n[代码执行结果]:\n```\n{output}\n```\n")
|
2025-06-21 16:33:21 +08:00
|
|
|
|
else:
|
2025-08-04 23:36:12 +08:00
|
|
|
|
answer_parts.append(
|
2025-06-21 16:33:21 +08:00
|
|
|
|
f"\n[代码执行失败]: {result.get('outcome', 'UNKNOWN')}\n"
|
|
|
|
|
|
)
|
|
|
|
|
|
|
2025-08-04 23:36:12 +08:00
|
|
|
|
if thought_summary_parts:
|
|
|
|
|
|
full_thought_summary = "\n".join(thought_summary_parts).strip()
|
|
|
|
|
|
full_answer = "".join(answer_parts).strip()
|
|
|
|
|
|
|
|
|
|
|
|
formatted_parts = []
|
|
|
|
|
|
if full_thought_summary:
|
|
|
|
|
|
formatted_parts.append(f"🤔 **思考过程**\n\n{full_thought_summary}")
|
|
|
|
|
|
if full_answer:
|
|
|
|
|
|
separator = "\n\n---\n\n" if full_thought_summary else ""
|
|
|
|
|
|
formatted_parts.append(f"{separator}✅ **回答**\n\n{full_answer}")
|
|
|
|
|
|
|
|
|
|
|
|
text_content = "".join(formatted_parts)
|
|
|
|
|
|
else:
|
|
|
|
|
|
text_content = "".join(answer_parts)
|
|
|
|
|
|
|
2025-06-21 16:33:21 +08:00
|
|
|
|
usage_info = response_json.get("usageMetadata")
|
|
|
|
|
|
|
|
|
|
|
|
grounding_metadata_obj = None
|
|
|
|
|
|
if grounding_data := candidate.get("groundingMetadata"):
|
|
|
|
|
|
try:
|
|
|
|
|
|
from ..types.models import LLMGroundingMetadata
|
|
|
|
|
|
|
|
|
|
|
|
grounding_metadata_obj = LLMGroundingMetadata(**grounding_data)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.warning(f"无法解析Grounding元数据: {grounding_data}, {e}")
|
|
|
|
|
|
|
|
|
|
|
|
return ResponseData(
|
|
|
|
|
|
text=text_content,
|
|
|
|
|
|
tool_calls=parsed_tool_calls,
|
2025-10-09 08:50:40 +08:00
|
|
|
|
images=images_bytes if images_bytes else None,
|
2025-06-21 16:33:21 +08:00
|
|
|
|
usage_info=usage_info,
|
|
|
|
|
|
raw_response=response_json,
|
|
|
|
|
|
grounding_metadata=grounding_metadata_obj,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(f"解析 Gemini 响应失败: {e}", e=e)
|
|
|
|
|
|
raise LLMException(
|
|
|
|
|
|
f"解析API响应失败: {e}",
|
|
|
|
|
|
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
|
|
|
|
|
cause=e,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_embedding_request(
|
|
|
|
|
|
self,
|
|
|
|
|
|
model: "LLMModel",
|
|
|
|
|
|
api_key: str,
|
|
|
|
|
|
texts: list[str],
|
|
|
|
|
|
task_type: "EmbeddingTaskType | str",
|
|
|
|
|
|
**kwargs: Any,
|
|
|
|
|
|
) -> RequestData:
|
|
|
|
|
|
"""准备文本嵌入请求"""
|
|
|
|
|
|
api_model_name = model.model_name
|
|
|
|
|
|
if not api_model_name.startswith("models/"):
|
|
|
|
|
|
api_model_name = f"models/{api_model_name}"
|
|
|
|
|
|
|
|
|
|
|
|
url = self.get_api_url(model, f"/{api_model_name}:batchEmbedContents")
|
|
|
|
|
|
headers = self.get_base_headers(api_key)
|
|
|
|
|
|
|
|
|
|
|
|
requests_payload = []
|
|
|
|
|
|
for text_content in texts:
|
|
|
|
|
|
request_item: dict[str, Any] = {
|
|
|
|
|
|
"content": {"parts": [{"text": text_content}]},
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
from ..types.enums import EmbeddingTaskType
|
|
|
|
|
|
|
|
|
|
|
|
if task_type and task_type != EmbeddingTaskType.RETRIEVAL_DOCUMENT:
|
|
|
|
|
|
request_item["task_type"] = str(task_type).upper()
|
|
|
|
|
|
if title := kwargs.get("title"):
|
|
|
|
|
|
request_item["title"] = title
|
|
|
|
|
|
if output_dimensionality := kwargs.get("output_dimensionality"):
|
|
|
|
|
|
request_item["output_dimensionality"] = output_dimensionality
|
|
|
|
|
|
|
|
|
|
|
|
requests_payload.append(request_item)
|
|
|
|
|
|
|
|
|
|
|
|
body = {"requests": requests_payload}
|
|
|
|
|
|
return RequestData(url=url, headers=headers, body=body)
|
|
|
|
|
|
|
|
|
|
|
|
def parse_embedding_response(
|
|
|
|
|
|
self, response_json: dict[str, Any]
|
|
|
|
|
|
) -> list[list[float]]:
|
|
|
|
|
|
"""解析文本嵌入响应"""
|
|
|
|
|
|
try:
|
|
|
|
|
|
embeddings_data = response_json["embeddings"]
|
|
|
|
|
|
return [item["values"] for item in embeddings_data]
|
|
|
|
|
|
except KeyError as e:
|
|
|
|
|
|
logger.error(f"解析Gemini嵌入响应时缺少键: {e}. 响应: {response_json}")
|
|
|
|
|
|
raise LLMException(
|
|
|
|
|
|
"Gemini嵌入响应格式错误",
|
|
|
|
|
|
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
|
|
|
|
|
details={"error": str(e)},
|
|
|
|
|
|
)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
logger.error(
|
|
|
|
|
|
f"解析Gemini嵌入响应时发生未知错误: {e}. 响应: {response_json}"
|
|
|
|
|
|
)
|
|
|
|
|
|
raise LLMException(
|
|
|
|
|
|
f"解析Gemini嵌入响应失败: {e}",
|
|
|
|
|
|
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
|
|
|
|
|
cause=e,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def validate_embedding_response(self, response_json: dict[str, Any]) -> None:
|
|
|
|
|
|
"""验证嵌入响应"""
|
|
|
|
|
|
super().validate_embedding_response(response_json)
|
|
|
|
|
|
if "embeddings" not in response_json or not isinstance(
|
|
|
|
|
|
response_json["embeddings"], list
|
|
|
|
|
|
):
|
|
|
|
|
|
raise LLMException(
|
|
|
|
|
|
"Gemini嵌入响应缺少'embeddings'字段或格式不正确",
|
|
|
|
|
|
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
|
|
|
|
|
details=response_json,
|
|
|
|
|
|
)
|
|
|
|
|
|
for item in response_json["embeddings"]:
|
|
|
|
|
|
if "values" not in item:
|
|
|
|
|
|
raise LLMException(
|
|
|
|
|
|
"Gemini嵌入响应的条目中缺少'values'字段",
|
|
|
|
|
|
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
|
|
|
|
|
details=response_json,
|
|
|
|
|
|
)
|