zhenxun_bot/zhenxun/services/llm/adapters/components/openai_components.py

348 lines
14 KiB
Python
Raw Normal View History

♻️ refactor(llm): 重构 LLM 服务架构,引入中间件与组件化适配器 - 【重构】LLM 服务核心架构: - 引入中间件管道,统一处理请求生命周期(重试、密钥选择、日志、网络请求)。 - 适配器重构为组件化设计,分离配置映射、消息转换、响应解析和工具序列化逻辑。 - 移除 `with_smart_retry` 装饰器,其功能由中间件接管。 - 移除 `LLMToolExecutor`,工具执行逻辑集成到 `ToolInvoker`。 - 【功能】增强配置系统: - `LLMGenerationConfig` 采用组件化结构(Core, Reasoning, Visual, Output, Safety, ToolConfig)。 - 新增 `GenConfigBuilder` 提供语义化配置构建方式。 - 新增 `LLMEmbeddingConfig` 用于嵌入专用配置。 - `CommonOverrides` 迁移并更新至新配置结构。 - 【功能】强化工具系统: - 引入 `ToolInvoker` 实现更灵活的工具执行,支持回调与结构化错误。 - `function_tool` 装饰器支持动态 Pydantic 模型创建和依赖注入 (`ToolParam`, `RunContext`)。 - 平台原生工具支持 (`GeminiCodeExecution`, `GeminiGoogleSearch`, `GeminiUrlContext`)。 - 【功能】高级生成与嵌入: - `generate_structured` 方法支持 In-Context Validation and Repair (IVR) 循环和 AutoCoT (思维链) 包装。 - 新增 `embed_query` 和 `embed_documents` 便捷嵌入 API。 - `OpenAIImageAdapter` 支持 OpenAI 兼容的图像生成。 - `SmartAdapter` 实现模型名称智能路由。 - 【重构】消息与类型系统: - `LLMContentPart` 扩展支持更多模态和代码执行相关内容。 - `LLMMessage` 和 `LLMResponse` 结构更新,支持 `content_parts` 和思维链签名。 - 统一 `LLMErrorCode` 和用户友好错误消息,提供更详细的网络/代理错误提示。 - `pyproject.toml` 移除 `bilireq`,新增 `json_repair`。 - 【优化】日志与调试: - 引入 `DebugLogOptions`,提供细粒度日志脱敏控制。 - 增强日志净化器,处理更多敏感数据和长字符串。 - 【清理】删除废弃模块: - `zhenxun/services/llm/memory.py` - `zhenxun/services/llm/executor.py` - `zhenxun/services/llm/config/presets.py` - `zhenxun/services/llm/types/content.py` - `zhenxun/services/llm/types/enums.py` - `zhenxun/services/llm/tools/__init__.py` - `zhenxun/services/llm/tools/manager.py`
2025-12-07 18:57:55 +08:00
import base64
import binascii
import json
from pathlib import Path
from typing import Any
from zhenxun.services.llm.adapters.base import ResponseData, process_image_data
from zhenxun.services.llm.adapters.components.interfaces import (
ConfigMapper,
MessageConverter,
ResponseParser,
ToolSerializer,
)
from zhenxun.services.llm.config.generation import (
ImageAspectRatio,
LLMGenerationConfig,
ResponseFormat,
StructuredOutputStrategy,
)
from zhenxun.services.llm.types import LLMMessage
from zhenxun.services.llm.types.capabilities import ModelCapabilities
from zhenxun.services.llm.types.exceptions import LLMErrorCode, LLMException
from zhenxun.services.llm.types.models import (
LLMToolCall,
LLMToolFunction,
ModelDetail,
ToolDefinition,
)
from zhenxun.services.llm.utils import sanitize_schema_for_llm
from zhenxun.services.log import logger
from zhenxun.utils.pydantic_compat import model_dump
class OpenAIConfigMapper(ConfigMapper):
def __init__(self, api_type: str = "openai"):
self.api_type = api_type
def map_config(
self,
config: LLMGenerationConfig,
model_detail: ModelDetail | None = None,
capabilities: ModelCapabilities | None = None,
) -> dict[str, Any]:
params: dict[str, Any] = {}
strategy = config.output.structured_output_strategy if config.output else None
if strategy is None:
strategy = (
StructuredOutputStrategy.TOOL_CALL
if self.api_type == "deepseek"
else StructuredOutputStrategy.NATIVE
)
if config.core:
if config.core.temperature is not None:
params["temperature"] = config.core.temperature
if config.core.max_tokens is not None:
params["max_tokens"] = config.core.max_tokens
if config.core.top_k is not None:
params["top_k"] = config.core.top_k
if config.core.top_p is not None:
params["top_p"] = config.core.top_p
if config.core.frequency_penalty is not None:
params["frequency_penalty"] = config.core.frequency_penalty
if config.core.presence_penalty is not None:
params["presence_penalty"] = config.core.presence_penalty
if config.core.stop is not None:
params["stop"] = config.core.stop
if config.core.repetition_penalty is not None:
if self.api_type == "openai":
logger.warning("OpenAI官方API不支持repetition_penalty参数已忽略")
else:
params["repetition_penalty"] = config.core.repetition_penalty
if config.reasoning and config.reasoning.effort:
params["reasoning_effort"] = config.reasoning.effort.value.lower()
if config.output:
if isinstance(config.output.response_format, dict):
params["response_format"] = config.output.response_format
elif (
config.output.response_format == ResponseFormat.JSON
and strategy == StructuredOutputStrategy.NATIVE
):
if config.output.response_schema:
sanitized = sanitize_schema_for_llm(
config.output.response_schema, api_type="openai"
)
params["response_format"] = {
"type": "json_schema",
"json_schema": {
"name": "structured_response",
"schema": sanitized,
"strict": True,
},
}
else:
params["response_format"] = {"type": "json_object"}
if config.tool_config:
mode = config.tool_config.mode
if mode == "NONE":
params["tool_choice"] = "none"
elif mode == "AUTO":
params["tool_choice"] = "auto"
elif mode == "ANY":
params["tool_choice"] = "required"
if config.visual and config.visual.aspect_ratio:
size_map = {
ImageAspectRatio.SQUARE: "1024x1024",
ImageAspectRatio.LANDSCAPE_16_9: "1792x1024",
ImageAspectRatio.PORTRAIT_9_16: "1024x1792",
}
ar = config.visual.aspect_ratio
if isinstance(ar, ImageAspectRatio):
mapped_size = size_map.get(ar)
if mapped_size:
params["size"] = mapped_size
elif isinstance(ar, str):
params["size"] = ar
if config.custom_params:
mapped_custom = config.custom_params.copy()
if "repetition_penalty" in mapped_custom and self.api_type == "openai":
mapped_custom.pop("repetition_penalty")
if "stop" in mapped_custom:
stop_value = mapped_custom["stop"]
if isinstance(stop_value, str):
mapped_custom["stop"] = [stop_value]
params.update(mapped_custom)
return params
class OpenAIMessageConverter(MessageConverter):
def convert_messages(self, messages: list[LLMMessage]) -> list[dict[str, Any]]:
openai_messages: list[dict[str, Any]] = []
for msg in messages:
openai_msg: dict[str, Any] = {"role": msg.role}
if msg.role == "tool":
openai_msg["tool_call_id"] = msg.tool_call_id
openai_msg["name"] = msg.name
openai_msg["content"] = msg.content
else:
if isinstance(msg.content, str):
openai_msg["content"] = msg.content
else:
content_parts = []
for part in msg.content:
if part.type == "text":
content_parts.append({"type": "text", "text": part.text})
elif part.type == "image":
content_parts.append(
{
"type": "image_url",
"image_url": {"url": part.image_source},
}
)
openai_msg["content"] = content_parts
if msg.role == "assistant" and msg.tool_calls:
assistant_tool_calls = []
for call in msg.tool_calls:
assistant_tool_calls.append(
{
"id": call.id,
"type": "function",
"function": {
"name": call.function.name,
"arguments": call.function.arguments,
},
}
)
openai_msg["tool_calls"] = assistant_tool_calls
if msg.name and msg.role != "tool":
openai_msg["name"] = msg.name
openai_messages.append(openai_msg)
return openai_messages
class OpenAIToolSerializer(ToolSerializer):
def serialize_tools(
self, tools: list[ToolDefinition]
) -> list[dict[str, Any]] | None:
if not tools:
return None
openai_tools = []
for tool in tools:
tool_dict = model_dump(tool)
parameters = tool_dict.get("parameters")
if parameters:
tool_dict["parameters"] = sanitize_schema_for_llm(
parameters, api_type="openai"
)
tool_dict["strict"] = True
openai_tools.append({"type": "function", "function": tool_dict})
return openai_tools
class OpenAIResponseParser(ResponseParser):
def validate_response(self, response_json: dict[str, Any]) -> None:
if response_json.get("error"):
error_info = response_json["error"]
if isinstance(error_info, dict):
error_message = error_info.get("message", "未知错误")
error_code = error_info.get("code", "unknown")
error_code_mapping = {
"invalid_api_key": LLMErrorCode.API_KEY_INVALID,
"authentication_failed": LLMErrorCode.API_KEY_INVALID,
"insufficient_quota": LLMErrorCode.API_QUOTA_EXCEEDED,
"rate_limit_exceeded": LLMErrorCode.API_RATE_LIMITED,
"quota_exceeded": LLMErrorCode.API_RATE_LIMITED,
"model_not_found": LLMErrorCode.MODEL_NOT_FOUND,
"invalid_model": LLMErrorCode.MODEL_NOT_FOUND,
"context_length_exceeded": LLMErrorCode.CONTEXT_LENGTH_EXCEEDED,
"max_tokens_exceeded": LLMErrorCode.CONTEXT_LENGTH_EXCEEDED,
"invalid_request_error": LLMErrorCode.INVALID_PARAMETER,
"invalid_parameter": LLMErrorCode.INVALID_PARAMETER,
}
llm_error_code = error_code_mapping.get(
error_code, LLMErrorCode.API_RESPONSE_INVALID
)
else:
error_message = str(error_info)
error_code = "unknown"
llm_error_code = LLMErrorCode.API_RESPONSE_INVALID
raise LLMException(
f"API请求失败: {error_message}",
code=llm_error_code,
details={"api_error": error_info, "error_code": error_code},
)
def parse(self, response_json: dict[str, Any]) -> ResponseData:
self.validate_response(response_json)
choices = response_json.get("choices", [])
if not choices:
return ResponseData(text="", raw_response=response_json)
choice = choices[0]
message = choice.get("message", {})
content = message.get("content", "")
reasoning_content = message.get("reasoning_content", None)
refusal = message.get("refusal")
if refusal:
raise LLMException(
f"模型拒绝生成请求: {refusal}",
code=LLMErrorCode.CONTENT_FILTERED,
details={"refusal": refusal},
recoverable=False,
)
if content:
content = content.strip()
images_payload: list[bytes | Path] = []
if content and content.startswith("{") and content.endswith("}"):
try:
content_json = json.loads(content)
if "b64_json" in content_json:
b64_str = content_json["b64_json"]
if isinstance(b64_str, str) and b64_str.startswith("data:"):
b64_str = b64_str.split(",", 1)[1]
decoded = base64.b64decode(b64_str)
images_payload.append(process_image_data(decoded))
content = "[图片已生成]"
elif "data" in content_json and isinstance(content_json["data"], str):
b64_str = content_json["data"]
if b64_str.startswith("data:"):
b64_str = b64_str.split(",", 1)[1]
decoded = base64.b64decode(b64_str)
images_payload.append(process_image_data(decoded))
content = "[图片已生成]"
except (json.JSONDecodeError, KeyError, binascii.Error):
pass
elif (
"images" in message
and isinstance(message["images"], list)
and message["images"]
):
for image_info in message["images"]:
if image_info.get("type") == "image_url":
image_url_obj = image_info.get("image_url", {})
url_str = image_url_obj.get("url", "")
if url_str.startswith("data:image"):
try:
b64_data = url_str.split(",", 1)[1]
decoded = base64.b64decode(b64_data)
images_payload.append(process_image_data(decoded))
except (IndexError, binascii.Error) as e:
logger.warning(f"解析OpenRouter Base64图片数据失败: {e}")
if images_payload:
content = content if content else "[图片已生成]"
parsed_tool_calls: list[LLMToolCall] | None = None
if message_tool_calls := message.get("tool_calls"):
parsed_tool_calls = []
for tc_data in message_tool_calls:
try:
if tc_data.get("type") == "function":
parsed_tool_calls.append(
LLMToolCall(
id=tc_data["id"],
function=LLMToolFunction(
name=tc_data["function"]["name"],
arguments=tc_data["function"]["arguments"],
),
)
)
except KeyError as e:
logger.warning(
f"解析OpenAI工具调用数据时缺少键: {tc_data}, 错误: {e}"
)
except Exception as e:
logger.warning(
f"解析OpenAI工具调用数据时出错: {tc_data}, 错误: {e}"
)
if not parsed_tool_calls:
parsed_tool_calls = None
final_text = content if content is not None else ""
if not final_text and parsed_tool_calls:
final_text = f"请求调用 {len(parsed_tool_calls)} 个工具。"
usage_info = response_json.get("usage")
return ResponseData(
text=final_text,
tool_calls=parsed_tool_calls,
usage_info=usage_info,
images=images_payload if images_payload else None,
raw_response=response_json,
thought_text=reasoning_content,
)