zhenxun_bot/zhenxun/services/llm/service.py

594 lines
22 KiB
Python
Raw Normal View History

"""
LLM 模型实现类
包含 LLM 模型的抽象基类和具体实现负责与各种 AI 提供商的 API 交互
"""
from abc import ABC, abstractmethod
from collections.abc import Awaitable, Callable
import json
from typing import Any, TypeVar
from pydantic import BaseModel
from zhenxun.services.log import logger
from zhenxun.utils.log_sanitizer import sanitize_for_logging
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
from .adapters.base import RequestData
from .config import LLMGenerationConfig
from .config.providers import get_ai_config
from .core import (
KeyStatusStore,
LLMHttpClient,
RetryConfig,
http_client_manager,
with_smart_retry,
)
from .types import (
EmbeddingTaskType,
LLMErrorCode,
LLMException,
LLMMessage,
LLMResponse,
ModelDetail,
ProviderConfig,
ToolExecutable,
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
from .types.capabilities import ModelCapabilities, ModelModality
T = TypeVar("T", bound=BaseModel)
class LLMModelBase(ABC):
"""LLM模型抽象基类"""
@abstractmethod
async def generate_response(
self,
messages: list[LLMMessage],
config: LLMGenerationConfig | None = None,
tools: dict[str, ToolExecutable] | None = None,
tool_choice: str | dict[str, Any] | None = None,
**kwargs: Any,
) -> LLMResponse:
"""生成高级响应"""
pass
@abstractmethod
async def generate_embeddings(
self,
texts: list[str],
task_type: EmbeddingTaskType | str = EmbeddingTaskType.RETRIEVAL_DOCUMENT,
**kwargs: Any,
) -> list[list[float]]:
"""生成文本嵌入向量"""
pass
class LLMModel(LLMModelBase):
"""LLM 模型实现类"""
def __init__(
self,
provider_config: ProviderConfig,
model_detail: ModelDetail,
key_store: KeyStatusStore,
http_client: LLMHttpClient,
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
capabilities: ModelCapabilities,
config_override: LLMGenerationConfig | None = None,
):
self.provider_config = provider_config
self.model_detail = model_detail
self.key_store = key_store
self.http_client: LLMHttpClient = http_client
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
self.capabilities = capabilities
self._generation_config = config_override
self.provider_name = provider_config.name
self.api_type = provider_config.api_type
self.api_base = provider_config.api_base
self.api_keys = (
[provider_config.api_key]
if isinstance(provider_config.api_key, str)
else provider_config.api_key
)
self.model_name = model_detail.model_name
self.temperature = model_detail.temperature
self.max_tokens = model_detail.max_tokens
self._is_closed = False
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
def can_process_images(self) -> bool:
"""检查模型是否支持图片作为输入。"""
return ModelModality.IMAGE in self.capabilities.input_modalities
def can_process_video(self) -> bool:
"""检查模型是否支持视频作为输入。"""
return ModelModality.VIDEO in self.capabilities.input_modalities
def can_process_audio(self) -> bool:
"""检查模型是否支持音频作为输入。"""
return ModelModality.AUDIO in self.capabilities.input_modalities
def can_generate_images(self) -> bool:
"""检查模型是否支持生成图片。"""
return ModelModality.IMAGE in self.capabilities.output_modalities
def can_generate_audio(self) -> bool:
"""检查模型是否支持生成音频 (TTS)。"""
return ModelModality.AUDIO in self.capabilities.output_modalities
def can_use_tools(self) -> bool:
"""检查模型是否支持工具调用/函数调用。"""
return self.capabilities.supports_tool_calling
def is_embedding_model(self) -> bool:
"""检查这是否是一个嵌入模型。"""
return self.capabilities.is_embedding_model
async def _get_http_client(self) -> LLMHttpClient:
"""获取HTTP客户端"""
if self.http_client.is_closed:
logger.debug(
f"LLMModel {self.provider_name}/{self.model_name} 的 HTTP 客户端已关闭,"
"正在获取新的客户端"
)
self.http_client = await http_client_manager.get_client(
self.provider_config
)
return self.http_client
async def _select_api_key(self, failed_keys: set[str] | None = None) -> str:
"""选择可用的API密钥使用轮询策略"""
if not self.api_keys:
raise LLMException(
f"提供商 {self.provider_name} 没有配置API密钥",
code=LLMErrorCode.NO_AVAILABLE_KEYS,
)
selected_key = await self.key_store.get_next_available_key(
self.provider_name, self.api_keys, failed_keys
)
if not selected_key:
raise LLMException(
f"提供商 {self.provider_name} 的所有API密钥当前都不可用",
code=LLMErrorCode.NO_AVAILABLE_KEYS,
details={
"total_keys": len(self.api_keys),
"failed_keys": len(failed_keys or set()),
},
)
return selected_key
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
async def _perform_api_call(
self,
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
prepare_request_func: Callable[[str], Awaitable["RequestData"]],
parse_response_func: Callable[[dict[str, Any]], Any],
http_client: "LLMHttpClient",
failed_keys: set[str] | None = None,
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
log_context: str = "API",
) -> tuple[Any, str]:
"""执行API调用的通用核心方法"""
api_key = await self._select_api_key(failed_keys)
try:
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
request_data = await prepare_request_func(api_key)
logger.info(
f"🌐 发起LLM请求 - 模型: {self.provider_name}/{self.model_name} "
f"[{log_context}]"
)
logger.debug(f"📡 请求URL: {request_data.url}")
masked_key = (
f"{api_key[:8]}...{api_key[-4:] if len(api_key) > 12 else '***'}"
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
logger.debug(f"🔑 API密钥: {masked_key}")
logger.debug(f"📋 请求头: {dict(request_data.headers)}")
sanitizer_req_context_map = {"gemini": "gemini_request"}
sanitizer_req_context = sanitizer_req_context_map.get(
self.api_type, "openai_request"
)
sanitized_body = sanitize_for_logging(
request_data.body, context=sanitizer_req_context
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
request_body_str = json.dumps(sanitized_body, ensure_ascii=False, indent=2)
logger.debug(f"📦 请求体: {request_body_str}")
http_response = await http_client.post(
request_data.url,
headers=request_data.headers,
json=request_data.body,
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
logger.debug(f"📥 响应状态码: {http_response.status_code}")
logger.debug(f"📄 响应头: {dict(http_response.headers)}")
response_bytes = await http_response.aread()
logger.debug(f"📦 响应体已完整读取 ({len(response_bytes)} bytes)")
if http_response.status_code != 200:
error_text = response_bytes.decode("utf-8", errors="ignore")
logger.error(
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
f"❌ HTTP请求失败: {http_response.status_code} - {error_text} "
f"[{log_context}]"
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
logger.debug(f"💥 完整错误响应: {error_text}")
await self.key_store.record_failure(
api_key, http_response.status_code, error_text
)
if http_response.status_code in [401, 403]:
error_code = LLMErrorCode.API_KEY_INVALID
elif http_response.status_code == 429:
error_code = LLMErrorCode.API_RATE_LIMITED
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
elif http_response.status_code in [402, 413]:
error_code = LLMErrorCode.API_QUOTA_EXCEEDED
else:
error_code = LLMErrorCode.API_REQUEST_FAILED
raise LLMException(
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
f"HTTP请求失败: {http_response.status_code}",
code=error_code,
details={
"status_code": http_response.status_code,
"response": error_text,
"api_key": api_key,
},
)
try:
response_json = json.loads(response_bytes)
sanitizer_context_map = {"gemini": "gemini_response"}
sanitizer_context = sanitizer_context_map.get(
self.api_type, "openai_response"
)
sanitized_for_log = sanitize_for_logging(
response_json, context=sanitizer_context
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
response_json_str = json.dumps(
sanitized_for_log, ensure_ascii=False, indent=2
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
)
logger.debug(f"📋 响应JSON: {response_json_str}")
parsed_data = parse_response_func(response_json)
except Exception as e:
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
logger.error(f"解析 {log_context} 响应失败: {e}", e=e)
await self.key_store.record_failure(api_key, None, str(e))
if isinstance(e, LLMException):
raise
else:
raise LLMException(
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
f"解析API {log_context} 响应失败: {e}",
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
cause=e,
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
logger.info(f"🎯 LLM响应解析完成 [{log_context}]")
return parsed_data, api_key
except LLMException:
raise
except Exception as e:
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
error_log_msg = f"生成 {log_context.lower()} 时发生未预期错误: {e}"
logger.error(error_log_msg, e=e)
await self.key_store.record_failure(api_key, None, str(e))
raise LLMException(
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
error_log_msg,
code=LLMErrorCode.GENERATION_FAILED
if log_context == "Generation"
else LLMErrorCode.EMBEDDING_FAILED,
cause=e,
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
async def _execute_embedding_request(
self,
adapter,
texts: list[str],
task_type: EmbeddingTaskType | str,
http_client: LLMHttpClient,
failed_keys: set[str] | None = None,
) -> list[list[float]]:
"""执行单次嵌入请求 - 供重试机制调用"""
async def prepare_request(api_key: str) -> RequestData:
return adapter.prepare_embedding_request(
model=self,
api_key=api_key,
texts=texts,
task_type=task_type,
)
def parse_response(response_json: dict[str, Any]) -> list[list[float]]:
adapter.validate_embedding_response(response_json)
return adapter.parse_embedding_response(response_json)
parsed_data, _api_key_used = await self._perform_api_call(
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
prepare_request_func=prepare_request,
parse_response_func=parse_response,
http_client=http_client,
failed_keys=failed_keys,
log_context="Embedding",
)
return parsed_data
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
async def _execute_with_smart_retry(
self,
adapter,
messages: list[LLMMessage],
config: LLMGenerationConfig | None,
tools: dict[str, ToolExecutable] | None,
tool_choice: str | dict[str, Any] | None,
http_client: LLMHttpClient,
):
"""智能重试机制 - 使用统一的重试装饰器"""
ai_config = get_ai_config()
max_retries = ai_config.get("max_retries_llm", 3)
retry_delay = ai_config.get("retry_delay_llm", 2)
retry_config = RetryConfig(max_retries=max_retries, retry_delay=retry_delay)
return await with_smart_retry(
self._execute_single_request,
adapter,
messages,
config,
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
tools,
tool_choice,
http_client,
retry_config=retry_config,
key_store=self.key_store,
provider_name=self.provider_name,
)
async def _execute_single_request(
self,
adapter,
messages: list[LLMMessage],
config: LLMGenerationConfig | None,
tools: dict[str, ToolExecutable] | None,
tool_choice: str | dict[str, Any] | None,
http_client: LLMHttpClient,
failed_keys: set[str] | None = None,
) -> tuple[LLMResponse, str]:
"""执行单次请求 - 供重试机制调用,直接返回 LLMResponse 和使用的 key"""
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
async def prepare_request(api_key: str) -> RequestData:
return await adapter.prepare_advanced_request(
model=self,
api_key=api_key,
messages=messages,
config=config,
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
tools=tools,
tool_choice=tool_choice,
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
def parse_response(response_json: dict[str, Any]) -> LLMResponse:
response_data = adapter.parse_response(
model=self,
response_json=response_json,
is_advanced=True,
)
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
from .types.models import LLMToolCall
response_tool_calls = []
if response_data.tool_calls:
for tc_data in response_data.tool_calls:
if isinstance(tc_data, LLMToolCall):
response_tool_calls.append(tc_data)
elif isinstance(tc_data, dict):
try:
response_tool_calls.append(LLMToolCall(**tc_data))
except Exception as e:
logger.warning(
f"无法将工具调用数据转换为LLMToolCall: {tc_data}, "
f"error: {e}"
)
else:
logger.warning(f"工具调用数据格式未知: {tc_data}")
return LLMResponse(
text=response_data.text,
usage_info=response_data.usage_info,
image_bytes=response_data.image_bytes,
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
raw_response=response_data.raw_response,
tool_calls=response_tool_calls if response_tool_calls else None,
code_executions=response_data.code_executions,
grounding_metadata=response_data.grounding_metadata,
cache_info=response_data.cache_info,
)
parsed_data, api_key_used = await self._perform_api_call(
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
prepare_request_func=prepare_request,
parse_response_func=parse_response,
http_client=http_client,
failed_keys=failed_keys,
log_context="Generation",
)
if config:
if config.response_validator:
try:
config.response_validator(parsed_data)
except Exception as e:
raise LLMException(
f"响应内容未通过自定义验证器: {e}",
code=LLMErrorCode.API_RESPONSE_INVALID,
details={"validator_error": str(e)},
cause=e,
) from e
policy = config.validation_policy
if policy:
if policy.get("require_image") and not parsed_data.image_bytes:
if self.api_type == "gemini" and parsed_data.raw_response:
usage_metadata = parsed_data.raw_response.get(
"usageMetadata", {}
)
prompt_token_details = usage_metadata.get(
"promptTokensDetails", []
)
prompt_had_image = any(
detail.get("modality") == "IMAGE"
for detail in prompt_token_details
)
if prompt_had_image:
raise LLMException(
"响应验证失败:模型接收了图片输入但未生成图片。",
code=LLMErrorCode.API_RESPONSE_INVALID,
details={
"policy": policy,
"text_response": parsed_data.text,
"raw_response": parsed_data.raw_response,
},
)
else:
logger.debug("Gemini提示词中未包含图片跳过图片要求重试。")
else:
raise LLMException(
"响应验证失败:要求返回图片但未找到图片数据。",
code=LLMErrorCode.API_RESPONSE_INVALID,
details={
"policy": policy,
"text_response": parsed_data.text,
},
)
return parsed_data, api_key_used
✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953) * ✨ feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 🚀 核心功能增强 - 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理 - 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器 - 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性 - 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数 - 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API - 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等) 🔧 架构重构与优化 - MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具 - API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复 - 跨平台兼容:Windows平台MCP工具npx命令自动包装处理 - HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配) 🛠️ API与配置完善 - 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型 - 消息转换工具:新增 `message_to_unimessage` 转换函数 - Gemini适配器增强:URL图片下载编码、动态安全阈值配置 - 缓存管理:新增模型实例缓存和管理功能 - 配置预设:扩展 CommonOverrides 预设配置选项 - 历史管理优化:支持多模态内容占位符替换,提升效率 📚 文档与开发体验 - README全面重写:新增完整使用指南、API参考和架构概览 - 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明 - 日志记录增强:支持详细调试信息输出 - API简化:移除冗余函数,优化接口设计 * 🎨 feat(llm): 统一LLM服务函数文档格式 * ✨ feat(llm): 添加新模型并简化提供者配置加载 * :rotating_light: auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00
async def close(self):
"""标记模型实例的当前使用周期结束"""
if self._is_closed:
return
self._is_closed = True
logger.debug(
f"LLMModel实例的使用周期已结束: {self} (共享HTTP客户端状态不受影响)"
)
async def __aenter__(self):
if self._is_closed:
logger.debug(
f"Re-entering context for closed LLMModel {self}. "
f"Resetting _is_closed to False."
)
self._is_closed = False
self._check_not_closed()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""异步上下文管理器出口"""
_ = exc_type, exc_val, exc_tb
await self.close()
def _check_not_closed(self):
"""检查实例是否已关闭"""
if self._is_closed:
raise RuntimeError(f"LLMModel实例已关闭: {self}")
async def generate_response(
self,
messages: list[LLMMessage],
config: LLMGenerationConfig | None = None,
tools: dict[str, ToolExecutable] | None = None,
tool_choice: str | dict[str, Any] | None = None,
**kwargs: Any,
) -> LLMResponse:
"""
生成高级响应
此方法现在只执行 *单次* LLM API 调用并将结果包括工具调用请求返回
"""
self._check_not_closed()
from .adapters import get_adapter_for_api_type
from .config.generation import create_generation_config_from_kwargs
final_request_config = self._generation_config or LLMGenerationConfig()
if kwargs:
kwargs_config = create_generation_config_from_kwargs(**kwargs)
merged_dict = final_request_config.to_dict()
merged_dict.update(kwargs_config.to_dict())
final_request_config = LLMGenerationConfig(**merged_dict)
if config is not None:
merged_dict = final_request_config.to_dict()
merged_dict.update(config.to_dict())
final_request_config = LLMGenerationConfig(**merged_dict)
adapter = get_adapter_for_api_type(self.api_type)
http_client = await self._get_http_client()
response, _ = await self._execute_with_smart_retry(
adapter,
messages,
final_request_config,
tools,
tool_choice,
http_client,
)
return response
async def generate_embeddings(
self,
texts: list[str],
task_type: EmbeddingTaskType | str = EmbeddingTaskType.RETRIEVAL_DOCUMENT,
**kwargs: Any,
) -> list[list[float]]:
"""生成文本嵌入向量"""
self._check_not_closed()
if not texts:
return []
from .adapters import get_adapter_for_api_type
adapter = get_adapter_for_api_type(self.api_type)
if not adapter:
raise LLMException(
f"未找到适用于 API 类型 '{self.api_type}' 的嵌入适配器",
code=LLMErrorCode.CONFIGURATION_ERROR,
)
http_client = await self._get_http_client()
ai_config = get_ai_config()
default_max_retries = ai_config.get("max_retries_llm", 3)
default_retry_delay = ai_config.get("retry_delay_llm", 2)
max_retries_embed = kwargs.get(
"max_retries_embed", max(1, default_max_retries // 2)
)
retry_delay_embed = kwargs.get("retry_delay_embed", default_retry_delay / 2)
retry_config = RetryConfig(
max_retries=max_retries_embed,
retry_delay=retry_delay_embed,
exponential_backoff=True,
key_rotation=True,
)
return await with_smart_retry(
self._execute_embedding_request,
adapter,
texts,
task_type,
http_client,
retry_config=retry_config,
key_store=self.key_store,
provider_name=self.provider_name,
)
def __str__(self) -> str:
status = "closed" if self._is_closed else "active"
return f"LLMModel({self.provider_name}/{self.model_name}, {status})"
def __repr__(self) -> str:
status = "closed" if self._is_closed else "active"
return (
f"LLMModel(provider={self.provider_name}, model={self.model_name}, "
f"api_type={self.api_type}, status={status})"
)