zhenxun_bot/zhenxun/utils/log_sanitizer.py

155 lines
6.3 KiB
Python
Raw Normal View History

import copy
from typing import Any
from nonebot.adapters import Message, MessageSegment
def _truncate_base64_string(value: str, threshold: int = 256) -> str:
"""如果字符串是超长的base64或data URI则截断它。"""
if not isinstance(value, str):
return value
prefixes = ("base64://", "data:image", "data:video", "data:audio")
if value.startswith(prefixes) and len(value) > threshold:
prefix = next((p for p in prefixes if value.startswith(p)), "base64")
return f"[{prefix}_data_omitted_len={len(value)}]"
return value
def _sanitize_nonebot_message(message: Message) -> Message:
"""净化nonebot.adapter.Message对象用于日志记录。"""
sanitized_message = copy.deepcopy(message)
for seg in sanitized_message:
seg: MessageSegment
if seg.type in ("image", "record", "video"):
file_info = seg.data.get("file", "")
if isinstance(file_info, str):
seg.data["file"] = _truncate_base64_string(file_info)
return sanitized_message
def _sanitize_openai_response(response_json: dict) -> dict:
"""净化OpenAI兼容API的响应体。"""
try:
sanitized_json = copy.deepcopy(response_json)
if "choices" in sanitized_json and isinstance(sanitized_json["choices"], list):
for choice in sanitized_json["choices"]:
if "message" in choice and isinstance(choice["message"], dict):
message = choice["message"]
if "images" in message and isinstance(message["images"], list):
for i, image_info in enumerate(message["images"]):
if "image_url" in image_info and isinstance(
image_info["image_url"], dict
):
url = image_info["image_url"].get("url", "")
message["images"][i]["image_url"]["url"] = (
_truncate_base64_string(url)
)
return sanitized_json
except Exception:
return response_json
def _sanitize_gemini_response(response_json: dict) -> dict:
"""净化Gemini API的响应体处理文本和图片生成两种格式。"""
try:
sanitized_json = copy.deepcopy(response_json)
def _process_candidates(candidates_list: list):
"""辅助函数,用于处理任何 candidates 列表。"""
if not isinstance(candidates_list, list):
return
for candidate in candidates_list:
if "content" in candidate and isinstance(candidate["content"], dict):
content = candidate["content"]
if "parts" in content and isinstance(content["parts"], list):
for i, part in enumerate(content["parts"]):
if "inlineData" in part and isinstance(
part["inlineData"], dict
):
data = part["inlineData"].get("data", "")
if isinstance(data, str) and len(data) > 256:
content["parts"][i]["inlineData"]["data"] = (
f"[base64_data_omitted_len={len(data)}]"
)
if "candidates" in sanitized_json:
_process_candidates(sanitized_json["candidates"])
if "image_generation" in sanitized_json and isinstance(
sanitized_json["image_generation"], dict
):
if "candidates" in sanitized_json["image_generation"]:
_process_candidates(sanitized_json["image_generation"]["candidates"])
return sanitized_json
except Exception:
return response_json
def _sanitize_gemini_request(body: dict) -> dict:
"""净化Gemini API的请求体进行结构转换和总结。"""
try:
sanitized_body = copy.deepcopy(body)
if "contents" in sanitized_body and isinstance(
sanitized_body["contents"], list
):
for content_item in sanitized_body["contents"]:
if "parts" in content_item and isinstance(content_item["parts"], list):
media_summary = []
new_parts = []
for part in content_item["parts"]:
if "inlineData" in part and isinstance(
part["inlineData"], dict
):
data = part["inlineData"].get("data")
if isinstance(data, str):
mime_type = part["inlineData"].get(
"mimeType", "unknown"
)
media_summary.append(f"{mime_type} ({len(data)} chars)")
continue
new_parts.append(part)
if media_summary:
summary_text = (
f"[多模态内容: {len(media_summary)}个文件 - "
f"{', '.join(media_summary)}]"
)
new_parts.insert(0, {"text": summary_text})
content_item["parts"] = new_parts
return sanitized_body
except Exception:
return body
def sanitize_for_logging(data: Any, context: str | None = None) -> Any:
"""
统一的日志净化入口
Args:
data: 需要净化的数据 (dict, Message, etc.).
context: 净化场景的上下文标识例如 'gemini_request', 'openai_response'.
Returns:
净化后的数据
"""
if context == "nonebot_message":
if isinstance(data, Message):
return _sanitize_nonebot_message(data)
elif context == "openai_response":
if isinstance(data, dict):
return _sanitize_openai_response(data)
elif context == "gemini_response":
if isinstance(data, dict):
return _sanitize_gemini_response(data)
elif context == "gemini_request":
if isinstance(data, dict):
return _sanitize_gemini_request(data)
else:
if isinstance(data, str):
return _truncate_base64_string(data)
return data