mirror of
https://github.com/zhenxun-org/zhenxun_bot.git
synced 2025-12-15 06:12:53 +08:00
Some checks failed
检查bot是否运行正常 / bot check (push) Waiting to run
Sequential Lint and Type Check / ruff-call (push) Waiting to run
Sequential Lint and Type Check / pyright-call (push) Blocked by required conditions
Release Drafter / Update Release Draft (push) Waiting to run
Force Sync to Aliyun / sync (push) Waiting to run
Update Version / update-version (push) Waiting to run
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, javascript-typescript) (push) Has been cancelled
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, python) (push) Has been cancelled
* ♻️ refactor(pydantic): 提取 Pydantic 兼容函数到独立模块 * ♻️ refactor!(llm): 重构LLM服务,引入现代化工具和执行器架构 🏗️ **架构变更** - 引入ToolProvider/ToolExecutable协议,取代ToolRegistry - 新增LLMToolExecutor,分离工具调用逻辑 - 新增BaseMemory抽象,解耦会话状态管理 🔄 **API重构** - 移除:analyze, analyze_multimodal, pipeline_chat - 新增:generate_structured, run_with_tools - 重构:chat, search, code变为无状态调用 🛠️ **工具系统** - 新增@function_tool装饰器 - 统一工具定义到ToolExecutable协议 - 移除MCP工具系统和mcp_tools.json --------- Co-authored-by: webjoin111 <455457521@qq.com>
122 lines
4.3 KiB
Python
122 lines
4.3 KiB
Python
import time
|
||
from typing import Any
|
||
|
||
from zhenxun.services.llm import (
|
||
LLMException,
|
||
get_global_default_model_name,
|
||
get_model_instance,
|
||
list_available_models,
|
||
set_global_default_model_name,
|
||
)
|
||
from zhenxun.services.llm.core import KeyStatus
|
||
from zhenxun.services.llm.manager import (
|
||
reset_key_status,
|
||
)
|
||
from zhenxun.services.llm.types import LLMMessage
|
||
|
||
|
||
class DataSource:
|
||
"""LLM管理插件的数据源和业务逻辑"""
|
||
|
||
@staticmethod
|
||
async def get_model_list(show_all: bool = False) -> list[dict[str, Any]]:
|
||
"""获取模型列表"""
|
||
models = list_available_models()
|
||
if show_all:
|
||
return models
|
||
return [m for m in models if m.get("is_available", True)]
|
||
|
||
@staticmethod
|
||
async def get_model_details(model_name_str: str) -> dict[str, Any] | None:
|
||
"""获取指定模型的详细信息"""
|
||
try:
|
||
model = await get_model_instance(model_name_str)
|
||
return {
|
||
"provider_config": model.provider_config,
|
||
"model_detail": model.model_detail,
|
||
"capabilities": model.capabilities,
|
||
}
|
||
except LLMException:
|
||
return None
|
||
|
||
@staticmethod
|
||
async def get_default_model() -> str | None:
|
||
"""获取全局默认模型"""
|
||
return get_global_default_model_name()
|
||
|
||
@staticmethod
|
||
async def set_default_model(model_name_str: str) -> tuple[bool, str]:
|
||
"""设置全局默认模型"""
|
||
success = set_global_default_model_name(model_name_str)
|
||
if success:
|
||
return True, f"✅ 成功将默认模型设置为: {model_name_str}"
|
||
else:
|
||
return False, f"❌ 设置失败,模型 '{model_name_str}' 不存在或无效。"
|
||
|
||
@staticmethod
|
||
async def test_model_connectivity(model_name_str: str) -> tuple[bool, str]:
|
||
"""测试模型连通性"""
|
||
start_time = time.monotonic()
|
||
try:
|
||
async with await get_model_instance(model_name_str) as model:
|
||
await model.generate_response([LLMMessage.user("你好")])
|
||
end_time = time.monotonic()
|
||
latency = (end_time - start_time) * 1000
|
||
return (
|
||
True,
|
||
f"✅ 模型 '{model_name_str}' 连接成功!\n响应延迟: {latency:.2f} ms",
|
||
)
|
||
except LLMException as e:
|
||
return (
|
||
False,
|
||
f"❌ 模型 '{model_name_str}' 连接测试失败:\n"
|
||
f"{e.user_friendly_message}\n错误码: {e.code.name}",
|
||
)
|
||
except Exception as e:
|
||
return False, f"❌ 测试时发生未知错误: {e!s}"
|
||
|
||
@staticmethod
|
||
async def get_key_status(provider_name: str) -> list[dict[str, Any]] | None:
|
||
"""获取并排序指定提供商的API Key状态"""
|
||
from zhenxun.services.llm.manager import get_key_usage_stats
|
||
|
||
all_stats = await get_key_usage_stats()
|
||
provider_stats = all_stats.get(provider_name)
|
||
|
||
if not provider_stats or not provider_stats.get("key_stats"):
|
||
return None
|
||
|
||
key_stats_dict = provider_stats["key_stats"]
|
||
|
||
stats_list = [
|
||
{"key_id": key_id, **stats} for key_id, stats in key_stats_dict.items()
|
||
]
|
||
|
||
def sort_key(item: dict[str, Any]):
|
||
status_priority = item.get("status_enum", KeyStatus.UNUSED).value
|
||
return (
|
||
status_priority,
|
||
100 - item.get("success_rate", 100.0),
|
||
-item.get("total_calls", 0),
|
||
)
|
||
|
||
sorted_stats_list = sorted(stats_list, key=sort_key)
|
||
|
||
return sorted_stats_list
|
||
|
||
@staticmethod
|
||
async def reset_key(provider_name: str, api_key: str | None) -> tuple[bool, str]:
|
||
"""重置API Key状态"""
|
||
success = await reset_key_status(provider_name, api_key)
|
||
if success:
|
||
if api_key:
|
||
if len(api_key) > 8:
|
||
target = f"API Key '{api_key[:4]}...{api_key[-4:]}'"
|
||
else:
|
||
target = f"API Key '{api_key}'"
|
||
else:
|
||
target = "所有API Keys"
|
||
return True, f"✅ 成功重置提供商 '{provider_name}' 的 {target} 的状态。"
|
||
else:
|
||
return False, "❌ 重置失败,请检查提供商名称或API Key是否正确。"
|