zhenxun_bot/zhenxun/services/llm/adapters/gemini.py
Rumio 48cbb2bf1d
feat(llm): 全面重构LLM服务模块,增强多模态与工具支持 (#1953)
*  feat(llm): 全面重构LLM服务模块,增强多模态与工具支持

🚀 核心功能增强
- 多模型链式调用:新增 `pipeline_chat` 支持复杂任务流处理
- 扩展提供商支持:新增 ARK(火山方舟)、SiliconFlow(硅基流动) 适配器
- 多模态处理增强:支持URL媒体文件下载转换,提升输入灵活性
- 历史对话支持:AI.analyze 方法支持历史消息上下文和可选 UniMessage 参数
- 文本嵌入功能:新增 `embed`、`analyze_multimodal`、`search_multimodal` 等API
- 模型能力系统:新增 `ModelCapabilities` 统一管理模型特性(多模态、工具调用等)

🔧 架构重构与优化
- MCP工具系统重构:配置独立化至 `data/llm/mcp_tools.json`,预置常用工具
- API调用逻辑统一:提取通用 `_perform_api_call` 方法,消除代码重复
- 跨平台兼容:Windows平台MCP工具npx命令自动包装处理
- HTTP客户端增强:兼容不同版本httpx代理配置(0.28+版本适配)

🛠️ API与配置完善
- 统一返回类型:`AI.analyze` 统一返回 `LLMResponse` 类型
- 消息转换工具:新增 `message_to_unimessage` 转换函数
- Gemini适配器增强:URL图片下载编码、动态安全阈值配置
- 缓存管理:新增模型实例缓存和管理功能
- 配置预设:扩展 CommonOverrides 预设配置选项
- 历史管理优化:支持多模态内容占位符替换,提升效率

📚 文档与开发体验
- README全面重写:新增完整使用指南、API参考和架构概览
- 文档内容扩充:补充嵌入模型、缓存管理、工具注册等功能说明
- 日志记录增强:支持详细调试信息输出
- API简化:移除冗余函数,优化接口设计

* 🎨  feat(llm): 统一LLM服务函数文档格式

*  feat(llm): 添加新模型并简化提供者配置加载

* 🚨 auto fix by pre-commit hooks

---------

Co-authored-by: webjoin111 <455457521@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-07-08 11:15:15 +08:00

559 lines
22 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Gemini API 适配器
"""
from typing import TYPE_CHECKING, Any
from zhenxun.services.log import logger
from ..types.exceptions import LLMErrorCode, LLMException
from .base import BaseAdapter, RequestData, ResponseData
if TYPE_CHECKING:
from ..config.generation import LLMGenerationConfig
from ..service import LLMModel
from ..types.content import LLMMessage
from ..types.enums import EmbeddingTaskType
from ..types.models import LLMTool, LLMToolCall
class GeminiAdapter(BaseAdapter):
"""Gemini API 适配器"""
@property
def api_type(self) -> str:
return "gemini"
@property
def supported_api_types(self) -> list[str]:
return ["gemini"]
def get_base_headers(self, api_key: str) -> dict[str, str]:
"""获取基础请求头"""
from zhenxun.utils.user_agent import get_user_agent
headers = get_user_agent()
headers.update({"Content-Type": "application/json"})
headers["x-goog-api-key"] = api_key
return headers
async def prepare_advanced_request(
self,
model: "LLMModel",
api_key: str,
messages: list["LLMMessage"],
config: "LLMGenerationConfig | None" = None,
tools: list["LLMTool"] | None = None,
tool_choice: str | dict[str, Any] | None = None,
) -> RequestData:
"""准备高级请求"""
effective_config = config if config is not None else model._generation_config
endpoint = self._get_gemini_endpoint(model, effective_config)
url = self.get_api_url(model, endpoint)
headers = self.get_base_headers(api_key)
gemini_contents: list[dict[str, Any]] = []
system_instruction_parts: list[dict[str, Any]] | None = None
for msg in messages:
current_parts: list[dict[str, Any]] = []
if msg.role == "system":
if isinstance(msg.content, str):
system_instruction_parts = [{"text": msg.content}]
elif isinstance(msg.content, list):
system_instruction_parts = [
await part.convert_for_api_async("gemini")
for part in msg.content
]
continue
elif msg.role == "user":
if isinstance(msg.content, str):
current_parts.append({"text": msg.content})
elif isinstance(msg.content, list):
for part_obj in msg.content:
current_parts.append(
await part_obj.convert_for_api_async("gemini")
)
gemini_contents.append({"role": "user", "parts": current_parts})
elif msg.role == "assistant" or msg.role == "model":
if isinstance(msg.content, str) and msg.content:
current_parts.append({"text": msg.content})
elif isinstance(msg.content, list):
for part_obj in msg.content:
current_parts.append(
await part_obj.convert_for_api_async("gemini")
)
if msg.tool_calls:
import json
for call in msg.tool_calls:
current_parts.append(
{
"functionCall": {
"name": call.function.name,
"args": json.loads(call.function.arguments),
}
}
)
if current_parts:
gemini_contents.append({"role": "model", "parts": current_parts})
elif msg.role == "tool":
if not msg.name:
raise ValueError("Gemini 工具消息必须包含 'name' 字段(函数名)。")
import json
try:
content_str = (
msg.content
if isinstance(msg.content, str)
else str(msg.content)
)
tool_result_obj = json.loads(content_str)
except json.JSONDecodeError:
content_str = (
msg.content
if isinstance(msg.content, str)
else str(msg.content)
)
logger.warning(
f"工具 {msg.name} 的结果不是有效的 JSON: {content_str}. "
f"包装为原始字符串。"
)
tool_result_obj = {"raw_output": content_str}
current_parts.append(
{
"functionResponse": {
"name": msg.name,
"response": tool_result_obj,
}
}
)
gemini_contents.append({"role": "function", "parts": current_parts})
body: dict[str, Any] = {"contents": gemini_contents}
if system_instruction_parts:
body["systemInstruction"] = {"parts": system_instruction_parts}
all_tools_for_request = []
if tools:
for tool in tools:
if tool.type == "function" and tool.function:
all_tools_for_request.append(
{"functionDeclarations": [tool.function]}
)
elif tool.type == "mcp" and tool.mcp_session:
if callable(tool.mcp_session):
raise ValueError(
"适配器接收到未激活的 MCP 会话工厂。"
"会话工厂应该在 LLMModel.generate_response 中被激活。"
)
all_tools_for_request.append(
tool.mcp_session.to_api_tool(api_type=self.api_type)
)
elif tool.type == "google_search":
all_tools_for_request.append({"googleSearch": {}})
if effective_config:
if getattr(effective_config, "enable_grounding", False):
has_explicit_gs_tool = any(
"googleSearch" in tool_item for tool_item in all_tools_for_request
)
if not has_explicit_gs_tool:
all_tools_for_request.append({"googleSearch": {}})
logger.debug("隐式启用 Google Search 工具进行信息来源关联。")
if getattr(effective_config, "enable_code_execution", False):
has_explicit_ce_tool = any(
"codeExecution" in tool_item for tool_item in all_tools_for_request
)
if not has_explicit_ce_tool:
all_tools_for_request.append({"codeExecution": {}})
logger.debug("隐式启用代码执行工具。")
if all_tools_for_request:
body["tools"] = all_tools_for_request
final_tool_choice = tool_choice
if final_tool_choice is None and effective_config:
final_tool_choice = getattr(effective_config, "tool_choice", None)
if final_tool_choice:
if isinstance(final_tool_choice, str):
mode_upper = final_tool_choice.upper()
if mode_upper in ["AUTO", "NONE", "ANY"]:
body["toolConfig"] = {"functionCallingConfig": {"mode": mode_upper}}
else:
body["toolConfig"] = self._convert_tool_choice_to_gemini(
final_tool_choice
)
else:
body["toolConfig"] = self._convert_tool_choice_to_gemini(
final_tool_choice
)
final_generation_config = self._build_gemini_generation_config(
model, effective_config
)
if final_generation_config:
body["generationConfig"] = final_generation_config
safety_settings = self._build_safety_settings(effective_config)
if safety_settings:
body["safetySettings"] = safety_settings
return RequestData(url=url, headers=headers, body=body)
def apply_config_override(
self,
model: "LLMModel",
body: dict[str, Any],
config: "LLMGenerationConfig | None" = None,
) -> dict[str, Any]:
"""应用配置覆盖 - Gemini 不需要额外的配置覆盖"""
return body
def _get_gemini_endpoint(
self, model: "LLMModel", config: "LLMGenerationConfig | None" = None
) -> str:
"""根据配置选择Gemini API端点"""
if config:
if getattr(config, "enable_code_execution", False):
return f"/v1beta/models/{model.model_name}:generateContent"
if getattr(config, "enable_grounding", False):
return f"/v1beta/models/{model.model_name}:generateContent"
return f"/v1beta/models/{model.model_name}:generateContent"
def _convert_tool_choice_to_gemini(
self, tool_choice_value: str | dict[str, Any]
) -> dict[str, Any]:
"""转换工具选择策略为Gemini格式"""
if isinstance(tool_choice_value, str):
mode_upper = tool_choice_value.upper()
if mode_upper in ["AUTO", "NONE", "ANY"]:
return {"functionCallingConfig": {"mode": mode_upper}}
else:
logger.warning(
f"不支持的 tool_choice 字符串值: '{tool_choice_value}'"
f"回退到 AUTO。"
)
return {"functionCallingConfig": {"mode": "AUTO"}}
elif isinstance(tool_choice_value, dict):
if (
tool_choice_value.get("type") == "function"
and "function" in tool_choice_value
):
func_name = tool_choice_value["function"].get("name")
if func_name:
return {
"functionCallingConfig": {
"mode": "ANY",
"allowedFunctionNames": [func_name],
}
}
else:
logger.warning(
f"tool_choice dict 中的函数名无效: {tool_choice_value}"
f"回退到 AUTO。"
)
return {"functionCallingConfig": {"mode": "AUTO"}}
elif "functionCallingConfig" in tool_choice_value:
return {
"functionCallingConfig": tool_choice_value["functionCallingConfig"]
}
else:
logger.warning(
f"不支持的 tool_choice dict 值: {tool_choice_value}。回退到 AUTO。"
)
return {"functionCallingConfig": {"mode": "AUTO"}}
logger.warning(
f"tool_choice 的类型无效: {type(tool_choice_value)}。回退到 AUTO。"
)
return {"functionCallingConfig": {"mode": "AUTO"}}
def _build_gemini_generation_config(
self, model: "LLMModel", config: "LLMGenerationConfig | None" = None
) -> dict[str, Any]:
"""构建Gemini生成配置"""
generation_config: dict[str, Any] = {}
effective_config = config if config is not None else model._generation_config
if effective_config:
base_api_params = effective_config.to_api_params(
api_type="gemini", model_name=model.model_name
)
generation_config.update(base_api_params)
if getattr(effective_config, "response_mime_type", None):
generation_config["responseMimeType"] = (
effective_config.response_mime_type
)
if getattr(effective_config, "response_schema", None):
generation_config["responseSchema"] = effective_config.response_schema
thinking_budget = getattr(effective_config, "thinking_budget", None)
if thinking_budget is not None:
if "thinkingConfig" not in generation_config:
generation_config["thinkingConfig"] = {}
generation_config["thinkingConfig"]["thinkingBudget"] = thinking_budget
if getattr(effective_config, "response_modalities", None):
modalities = effective_config.response_modalities
if isinstance(modalities, list):
generation_config["responseModalities"] = [
m.upper() for m in modalities
]
elif isinstance(modalities, str):
generation_config["responseModalities"] = [modalities.upper()]
generation_config = {
k: v for k, v in generation_config.items() if v is not None
}
if generation_config:
param_keys = list(generation_config.keys())
logger.debug(
f"构建Gemini生成配置完成包含 {len(generation_config)} 个参数: "
f"{param_keys}"
)
return generation_config
def _build_safety_settings(
self, config: "LLMGenerationConfig | None" = None
) -> list[dict[str, Any]] | None:
"""构建安全设置"""
if not config:
return None
safety_settings = []
safety_categories = [
"HARM_CATEGORY_HARASSMENT",
"HARM_CATEGORY_HATE_SPEECH",
"HARM_CATEGORY_SEXUALLY_EXPLICIT",
"HARM_CATEGORY_DANGEROUS_CONTENT",
]
custom_safety_settings = getattr(config, "safety_settings", None)
if custom_safety_settings:
for category, threshold in custom_safety_settings.items():
safety_settings.append({"category": category, "threshold": threshold})
else:
from ..config.providers import get_gemini_safety_threshold
threshold = get_gemini_safety_threshold()
for category in safety_categories:
safety_settings.append({"category": category, "threshold": threshold})
return safety_settings if safety_settings else None
def parse_response(
self,
model: "LLMModel",
response_json: dict[str, Any],
is_advanced: bool = False,
) -> ResponseData:
"""解析API响应"""
return self._parse_response(model, response_json, is_advanced)
def _parse_response(
self,
model: "LLMModel",
response_json: dict[str, Any],
is_advanced: bool = False,
) -> ResponseData:
"""解析 Gemini API 响应"""
_ = is_advanced
self.validate_response(response_json)
try:
candidates = response_json.get("candidates", [])
if not candidates:
logger.debug("Gemini响应中没有candidates。")
return ResponseData(text="", raw_response=response_json)
candidate = candidates[0]
if candidate.get("finishReason") in [
"RECITATION",
"OTHER",
] and not candidate.get("content"):
logger.warning(
f"Gemini candidate finished with reason "
f"'{candidate.get('finishReason')}' and no content."
)
return ResponseData(
text="",
raw_response=response_json,
usage_info=response_json.get("usageMetadata"),
)
content_data = candidate.get("content", {})
parts = content_data.get("parts", [])
text_content = ""
parsed_tool_calls: list["LLMToolCall"] | None = None
for part in parts:
if "text" in part:
text_content += part["text"]
elif "functionCall" in part:
if parsed_tool_calls is None:
parsed_tool_calls = []
fc_data = part["functionCall"]
try:
import json
from ..types.models import LLMToolCall, LLMToolFunction
call_id = f"call_{model.provider_name}_{len(parsed_tool_calls)}"
parsed_tool_calls.append(
LLMToolCall(
id=call_id,
function=LLMToolFunction(
name=fc_data["name"],
arguments=json.dumps(fc_data["args"]),
),
)
)
except KeyError as e:
logger.warning(
f"解析Gemini functionCall时缺少键: {fc_data}, 错误: {e}"
)
except Exception as e:
logger.warning(
f"解析Gemini functionCall时出错: {fc_data}, 错误: {e}"
)
elif "codeExecutionResult" in part:
result = part["codeExecutionResult"]
if result.get("outcome") == "OK":
output = result.get("output", "")
text_content += f"\n[代码执行结果]:\n{output}\n"
else:
text_content += (
f"\n[代码执行失败]: {result.get('outcome', 'UNKNOWN')}\n"
)
usage_info = response_json.get("usageMetadata")
grounding_metadata_obj = None
if grounding_data := candidate.get("groundingMetadata"):
try:
from ..types.models import LLMGroundingMetadata
grounding_metadata_obj = LLMGroundingMetadata(**grounding_data)
except Exception as e:
logger.warning(f"无法解析Grounding元数据: {grounding_data}, {e}")
return ResponseData(
text=text_content,
tool_calls=parsed_tool_calls,
usage_info=usage_info,
raw_response=response_json,
grounding_metadata=grounding_metadata_obj,
)
except Exception as e:
logger.error(f"解析 Gemini 响应失败: {e}", e=e)
raise LLMException(
f"解析API响应失败: {e}",
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
cause=e,
)
def prepare_embedding_request(
self,
model: "LLMModel",
api_key: str,
texts: list[str],
task_type: "EmbeddingTaskType | str",
**kwargs: Any,
) -> RequestData:
"""准备文本嵌入请求"""
api_model_name = model.model_name
if not api_model_name.startswith("models/"):
api_model_name = f"models/{api_model_name}"
url = self.get_api_url(model, f"/{api_model_name}:batchEmbedContents")
headers = self.get_base_headers(api_key)
requests_payload = []
for text_content in texts:
request_item: dict[str, Any] = {
"content": {"parts": [{"text": text_content}]},
}
from ..types.enums import EmbeddingTaskType
if task_type and task_type != EmbeddingTaskType.RETRIEVAL_DOCUMENT:
request_item["task_type"] = str(task_type).upper()
if title := kwargs.get("title"):
request_item["title"] = title
if output_dimensionality := kwargs.get("output_dimensionality"):
request_item["output_dimensionality"] = output_dimensionality
requests_payload.append(request_item)
body = {"requests": requests_payload}
return RequestData(url=url, headers=headers, body=body)
def parse_embedding_response(
self, response_json: dict[str, Any]
) -> list[list[float]]:
"""解析文本嵌入响应"""
try:
embeddings_data = response_json["embeddings"]
return [item["values"] for item in embeddings_data]
except KeyError as e:
logger.error(f"解析Gemini嵌入响应时缺少键: {e}. 响应: {response_json}")
raise LLMException(
"Gemini嵌入响应格式错误",
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
details={"error": str(e)},
)
except Exception as e:
logger.error(
f"解析Gemini嵌入响应时发生未知错误: {e}. 响应: {response_json}"
)
raise LLMException(
f"解析Gemini嵌入响应失败: {e}",
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
cause=e,
)
def validate_embedding_response(self, response_json: dict[str, Any]) -> None:
"""验证嵌入响应"""
super().validate_embedding_response(response_json)
if "embeddings" not in response_json or not isinstance(
response_json["embeddings"], list
):
raise LLMException(
"Gemini嵌入响应缺少'embeddings'字段或格式不正确",
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
details=response_json,
)
for item in response_json["embeddings"]:
if "values" not in item:
raise LLMException(
"Gemini嵌入响应的条目中缺少'values'字段",
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
details=response_json,
)