mirror of
https://github.com/zhenxun-org/zhenxun_bot.git
synced 2025-12-14 13:42:56 +08:00
Some checks failed
检查bot是否运行正常 / bot check (push) Has been cancelled
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, python) (push) Has been cancelled
Sequential Lint and Type Check / ruff-call (push) Has been cancelled
Release Drafter / Update Release Draft (push) Has been cancelled
Force Sync to Aliyun / sync (push) Has been cancelled
Update Version / update-version (push) Has been cancelled
Sequential Lint and Type Check / pyright-call (push) Has been cancelled
* ⚡️ perf(image_utils): 优化图片哈希获取避免阻塞异步 * ✨ feat(llm): 增强 LLM 管理功能,支持纯文本列表输出,优化模型能力识别并新增提供商 - 【LLM 管理器】为 `llm list` 命令添加 `--text` 选项,支持以纯文本格式输出模型列表。 - 【LLM 配置】新增 `OpenRouter` LLM 提供商的默认配置。 - 【模型能力】增强 `get_model_capabilities` 函数的查找逻辑,支持模型名称分段匹配和更灵活的通配符匹配。 - 【模型能力】为 `Gemini` 模型能力注册表使用更通用的通配符模式。 - 【模型能力】新增 `GPT` 系列模型的详细能力定义,包括多模态输入输出和工具调用支持。 * ✨ feat(renderer): 添加 Jinja2 `inline_asset` 全局函数 - 新增 `RendererService._inline_asset_global` 方法,并注册为 Jinja2 全局函数 `inline_asset`。 - 允许模板通过 `{{ inline_asset('@namespace/path/to/asset.svg') }}` 直接内联已注册命名空间下的资源文件内容。 - 主要用于解决内联 SVG 时可能遇到的跨域安全问题。 - 【重构】优化 `ResourceResolver.resolve_asset_uri` 中对命名空间资源 (以 `@` 开头) 的解析逻辑,确保能够正确获取文件绝对路径并返回 URI。 - 改进 `RenderableComponent.get_extra_css`,使其在组件定义 `component_css` 时自动返回该 CSS 内容。 - 清理 `Renderable` 协议和 `RenderableComponent` 基类中已存在方法的 `[新增]` 标记。 * ✨ feat(tag): 添加标签克隆功能 - 新增 `tag clone <源标签名> <新标签名>` 命令,用于复制现有标签。 - 【优化】在 `tag create`, `tag edit --add`, `tag edit --set` 命令中,自动去重传入的群组ID,避免重复关联。 * ✨ feat(broadcast): 实现标签定向广播、强制发送及并发控制 - 【新功能】 - 新增标签定向广播功能,支持通过 `-t <标签名>` 或 `广播到 <标签名>` 命令向指定标签的群组发送消息 - 引入广播强制发送模式,允许绕过群组的任务阻断设置 - 实现广播并发控制,通过配置限制同时发送任务数量,避免API速率限制 - 优化视频消息处理,支持从URL下载视频内容并作为原始数据发送,提高跨平台兼容性 - 【配置】 - 添加 `DEFAULT_BROADCAST` 配置项,用于设置群组进群时广播功能的默认开关状态 - 添加 `BROADCAST_CONCURRENCY_LIMIT` 配置项,用于控制广播时的最大并发任务数 * ✨ feat(renderer): 支持组件变体样式收集 * ✨ feat(tag): 实现群组标签自动清理及手动清理功能 * 🐛 fix(gemini): 增加响应验证以处理内容过滤(promptFeedback) * 🐛 fix(codeql): 移除对 JavaScript 和 TypeScript 的分析支持 * 🚨 auto fix by pre-commit hooks --------- Co-authored-by: webjoin111 <455457521@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
407 lines
13 KiB
Python
407 lines
13 KiB
Python
"""
|
||
LLM 提供商配置管理
|
||
|
||
负责注册和管理 AI 服务提供商的配置项。
|
||
"""
|
||
|
||
from functools import lru_cache
|
||
from typing import Any
|
||
|
||
from pydantic import BaseModel, Field
|
||
|
||
from zhenxun.configs.config import Config
|
||
from zhenxun.configs.utils import parse_as
|
||
from zhenxun.services.log import logger
|
||
from zhenxun.utils.manager.priority_manager import PriorityLifecycle
|
||
|
||
from ..core import key_store
|
||
from ..tools import tool_provider_manager
|
||
from ..types.models import ModelDetail, ProviderConfig
|
||
|
||
AI_CONFIG_GROUP = "AI"
|
||
PROVIDERS_CONFIG_KEY = "PROVIDERS"
|
||
|
||
|
||
class LLMConfig(BaseModel):
|
||
"""LLM 服务配置类"""
|
||
|
||
default_model_name: str | None = Field(
|
||
default=None,
|
||
description="LLM服务全局默认使用的模型名称 (格式: ProviderName/ModelName)",
|
||
)
|
||
proxy: str | None = Field(
|
||
default=None,
|
||
description="LLM服务请求使用的网络代理,例如 http://127.0.0.1:7890",
|
||
)
|
||
timeout: int = Field(default=180, description="LLM服务API请求超时时间(秒)")
|
||
max_retries_llm: int = Field(
|
||
default=3, description="LLM服务请求失败时的最大重试次数"
|
||
)
|
||
retry_delay_llm: int = Field(
|
||
default=2, description="LLM服务请求重试的基础延迟时间(秒)"
|
||
)
|
||
providers: list[ProviderConfig] = Field(
|
||
default_factory=list, description="配置多个 AI 服务提供商及其模型信息"
|
||
)
|
||
|
||
def get_provider_by_name(self, name: str) -> ProviderConfig | None:
|
||
"""根据名称获取提供商配置
|
||
|
||
参数:
|
||
name: 提供商名称
|
||
|
||
返回:
|
||
ProviderConfig | None: 提供商配置,如果未找到则返回 None
|
||
"""
|
||
for provider in self.providers:
|
||
if provider.name == name:
|
||
return provider
|
||
return None
|
||
|
||
def get_model_by_provider_and_name(
|
||
self, provider_name: str, model_name: str
|
||
) -> tuple[ProviderConfig, ModelDetail] | None:
|
||
"""根据提供商名称和模型名称获取配置
|
||
|
||
参数:
|
||
provider_name: 提供商名称
|
||
model_name: 模型名称
|
||
|
||
返回:
|
||
tuple[ProviderConfig, ModelDetail] | None: 提供商配置和模型详情的元组,
|
||
如果未找到则返回 None
|
||
"""
|
||
provider = self.get_provider_by_name(provider_name)
|
||
if not provider:
|
||
return None
|
||
|
||
for model in provider.models:
|
||
if model.model_name == model_name:
|
||
return provider, model
|
||
return None
|
||
|
||
def list_available_models(self) -> list[dict[str, Any]]:
|
||
"""列出所有可用的模型
|
||
|
||
返回:
|
||
list[dict[str, Any]]: 模型信息列表
|
||
"""
|
||
models = []
|
||
for provider in self.providers:
|
||
for model in provider.models:
|
||
models.append(
|
||
{
|
||
"provider_name": provider.name,
|
||
"model_name": model.model_name,
|
||
"full_name": f"{provider.name}/{model.model_name}",
|
||
"is_available": model.is_available,
|
||
"is_embedding_model": model.is_embedding_model,
|
||
"api_type": provider.api_type,
|
||
}
|
||
)
|
||
return models
|
||
|
||
def validate_model_name(self, provider_model_name: str) -> bool:
|
||
"""验证模型名称格式是否正确
|
||
|
||
参数:
|
||
provider_model_name: 格式为 "ProviderName/ModelName" 的字符串
|
||
|
||
返回:
|
||
bool: 是否有效
|
||
"""
|
||
if not provider_model_name or "/" not in provider_model_name:
|
||
return False
|
||
|
||
parts = provider_model_name.split("/", 1)
|
||
if len(parts) != 2:
|
||
return False
|
||
|
||
provider_name, model_name = parts
|
||
return (
|
||
self.get_model_by_provider_and_name(provider_name, model_name) is not None
|
||
)
|
||
|
||
|
||
def get_ai_config():
|
||
"""获取 AI 配置组"""
|
||
return Config.get(AI_CONFIG_GROUP)
|
||
|
||
|
||
def get_default_providers() -> list[dict[str, Any]]:
|
||
"""获取默认的提供商配置
|
||
|
||
返回:
|
||
list[dict[str, Any]]: 默认提供商配置列表
|
||
"""
|
||
return [
|
||
{
|
||
"name": "DeepSeek",
|
||
"api_key": "YOUR_ARK_API_KEY",
|
||
"api_base": "https://api.deepseek.com",
|
||
"api_type": "openai",
|
||
"models": [
|
||
{
|
||
"model_name": "deepseek-chat",
|
||
"max_tokens": 4096,
|
||
"temperature": 0.7,
|
||
},
|
||
{
|
||
"model_name": "deepseek-reasoner",
|
||
},
|
||
],
|
||
},
|
||
{
|
||
"name": "ARK",
|
||
"api_key": "YOUR_ARK_API_KEY",
|
||
"api_base": "https://ark.cn-beijing.volces.com",
|
||
"api_type": "ark",
|
||
"models": [
|
||
{"model_name": "deepseek-r1-250528"},
|
||
{"model_name": "doubao-seed-1-6-250615"},
|
||
{"model_name": "doubao-seed-1-6-flash-250615"},
|
||
{"model_name": "doubao-seed-1-6-thinking-250615"},
|
||
],
|
||
},
|
||
{
|
||
"name": "siliconflow",
|
||
"api_key": "YOUR_ARK_API_KEY",
|
||
"api_base": "https://api.siliconflow.cn",
|
||
"api_type": "openai",
|
||
"models": [
|
||
{"model_name": "deepseek-ai/DeepSeek-V3"},
|
||
],
|
||
},
|
||
{
|
||
"name": "GLM",
|
||
"api_key": "YOUR_ARK_API_KEY",
|
||
"api_base": "https://open.bigmodel.cn",
|
||
"api_type": "zhipu",
|
||
"models": [
|
||
{"model_name": "glm-4-flash"},
|
||
{"model_name": "glm-4-plus"},
|
||
],
|
||
},
|
||
{
|
||
"name": "Gemini",
|
||
"api_key": [
|
||
"AIzaSy*****************************",
|
||
"AIzaSy*****************************",
|
||
"AIzaSy*****************************",
|
||
],
|
||
"api_base": "https://generativelanguage.googleapis.com",
|
||
"api_type": "gemini",
|
||
"models": [
|
||
{"model_name": "gemini-2.5-flash"},
|
||
{"model_name": "gemini-2.5-pro"},
|
||
{"model_name": "gemini-2.5-flash-lite"},
|
||
],
|
||
},
|
||
{
|
||
"name": "OpenRouter",
|
||
"api_key": "YOUR_OPENROUTER_API_KEY",
|
||
"api_base": "https://openrouter.ai/api",
|
||
"api_type": "openrouter",
|
||
"models": [
|
||
{"model_name": "google/gemini-2.5-pro"},
|
||
{"model_name": "google/gemini-2.5-flash"},
|
||
{"model_name": "x-ai/grok-4"},
|
||
],
|
||
},
|
||
]
|
||
|
||
|
||
def register_llm_configs():
|
||
"""注册 LLM 服务的配置项"""
|
||
logger.info("注册 LLM 服务的配置项")
|
||
|
||
llm_config = LLMConfig()
|
||
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"default_model_name",
|
||
llm_config.default_model_name,
|
||
help="LLM服务全局默认使用的模型名称 (格式: ProviderName/ModelName)",
|
||
type=str,
|
||
)
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"proxy",
|
||
llm_config.proxy,
|
||
help="LLM服务请求使用的网络代理,例如 http://127.0.0.1:7890",
|
||
type=str,
|
||
)
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"timeout",
|
||
llm_config.timeout,
|
||
help="LLM服务API请求超时时间(秒)",
|
||
type=int,
|
||
)
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"max_retries_llm",
|
||
llm_config.max_retries_llm,
|
||
help="LLM服务请求失败时的最大重试次数",
|
||
type=int,
|
||
)
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"retry_delay_llm",
|
||
llm_config.retry_delay_llm,
|
||
help="LLM服务请求重试的基础延迟时间(秒)",
|
||
type=int,
|
||
)
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"gemini_safety_threshold",
|
||
"BLOCK_MEDIUM_AND_ABOVE",
|
||
help=(
|
||
"Gemini 安全过滤阈值 "
|
||
"(BLOCK_LOW_AND_ABOVE: 阻止低级别及以上, "
|
||
"BLOCK_MEDIUM_AND_ABOVE: 阻止中等级别及以上, "
|
||
"BLOCK_ONLY_HIGH: 只阻止高级别, "
|
||
"BLOCK_NONE: 不阻止)"
|
||
),
|
||
type=str,
|
||
)
|
||
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
PROVIDERS_CONFIG_KEY,
|
||
get_default_providers(),
|
||
help="配置多个 AI 服务提供商及其模型信息",
|
||
default_value=[],
|
||
type=list[ProviderConfig],
|
||
)
|
||
|
||
|
||
@lru_cache(maxsize=1)
|
||
def get_llm_config() -> LLMConfig:
|
||
"""获取 LLM 配置实例,不再加载 MCP 工具配置"""
|
||
ai_config = get_ai_config()
|
||
|
||
config_data = {
|
||
"default_model_name": ai_config.get("default_model_name"),
|
||
"proxy": ai_config.get("proxy"),
|
||
"timeout": ai_config.get("timeout", 180),
|
||
"max_retries_llm": ai_config.get("max_retries_llm", 3),
|
||
"retry_delay_llm": ai_config.get("retry_delay_llm", 2),
|
||
PROVIDERS_CONFIG_KEY: ai_config.get(PROVIDERS_CONFIG_KEY, []),
|
||
}
|
||
|
||
return parse_as(LLMConfig, config_data)
|
||
|
||
|
||
def get_gemini_safety_threshold() -> str:
|
||
"""获取 Gemini 安全过滤阈值配置
|
||
|
||
返回:
|
||
str: 安全过滤阈值
|
||
"""
|
||
ai_config = get_ai_config()
|
||
return ai_config.get("gemini_safety_threshold", "BLOCK_MEDIUM_AND_ABOVE")
|
||
|
||
|
||
def validate_llm_config() -> tuple[bool, list[str]]:
|
||
"""验证 LLM 配置的有效性
|
||
|
||
返回:
|
||
tuple[bool, list[str]]: (是否有效, 错误信息列表)
|
||
"""
|
||
errors = []
|
||
|
||
try:
|
||
llm_config = get_llm_config()
|
||
|
||
if llm_config.timeout <= 0:
|
||
errors.append("timeout 必须大于 0")
|
||
|
||
if llm_config.max_retries_llm < 0:
|
||
errors.append("max_retries_llm 不能小于 0")
|
||
|
||
if llm_config.retry_delay_llm <= 0:
|
||
errors.append("retry_delay_llm 必须大于 0")
|
||
|
||
if not llm_config.providers:
|
||
errors.append("至少需要配置一个 AI 服务提供商")
|
||
else:
|
||
provider_names = set()
|
||
for provider in llm_config.providers:
|
||
if provider.name in provider_names:
|
||
errors.append(f"提供商名称重复: {provider.name}")
|
||
provider_names.add(provider.name)
|
||
|
||
if not provider.api_key:
|
||
errors.append(f"提供商 {provider.name} 缺少 API Key")
|
||
|
||
if not provider.models:
|
||
errors.append(f"提供商 {provider.name} 没有配置任何模型")
|
||
else:
|
||
model_names = set()
|
||
for model in provider.models:
|
||
if model.model_name in model_names:
|
||
errors.append(
|
||
f"提供商 {provider.name} 中模型名称重复: "
|
||
f"{model.model_name}"
|
||
)
|
||
model_names.add(model.model_name)
|
||
|
||
if llm_config.default_model_name:
|
||
if not llm_config.validate_model_name(llm_config.default_model_name):
|
||
errors.append(
|
||
f"默认模型 {llm_config.default_model_name} 在配置中不存在"
|
||
)
|
||
|
||
except Exception as e:
|
||
errors.append(f"配置解析失败: {e!s}")
|
||
|
||
return len(errors) == 0, errors
|
||
|
||
|
||
def set_default_model(provider_model_name: str | None) -> bool:
|
||
"""设置默认模型
|
||
|
||
参数:
|
||
provider_model_name: 模型名称,格式为 "ProviderName/ModelName",None 表示清除
|
||
|
||
返回:
|
||
bool: 是否设置成功
|
||
"""
|
||
if provider_model_name:
|
||
llm_config = get_llm_config()
|
||
if not llm_config.validate_model_name(provider_model_name):
|
||
logger.error(f"模型 {provider_model_name} 在配置中不存在")
|
||
return False
|
||
|
||
Config.set_config(
|
||
AI_CONFIG_GROUP, "default_model_name", provider_model_name, auto_save=True
|
||
)
|
||
|
||
if provider_model_name:
|
||
logger.info(f"默认模型已设置为: {provider_model_name}")
|
||
else:
|
||
logger.info("默认模型已清除")
|
||
|
||
return True
|
||
|
||
|
||
@PriorityLifecycle.on_startup(priority=10)
|
||
async def _init_llm_config_on_startup():
|
||
"""
|
||
在服务启动时主动调用一次 get_llm_config 和 key_store.initialize,
|
||
并预热工具提供者管理器。
|
||
"""
|
||
logger.info("正在初始化 LLM 配置并加载密钥状态...")
|
||
try:
|
||
get_llm_config()
|
||
await key_store.initialize()
|
||
logger.debug("LLM 配置和密钥状态初始化完成。")
|
||
|
||
logger.debug("正在预热 LLM 工具提供者管理器...")
|
||
await tool_provider_manager.initialize()
|
||
logger.debug("LLM 工具提供者管理器预热完成。")
|
||
|
||
except Exception as e:
|
||
logger.error(f"LLM 配置或密钥状态初始化时发生错误: {e}", e=e)
|