zhenxun_bot/zhenxun/services/data_access.py
HibiKier d9e65057cf
Some checks failed
检查bot是否运行正常 / bot check (push) Has been cancelled
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, javascript-typescript) (push) Has been cancelled
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, python) (push) Has been cancelled
Sequential Lint and Type Check / ruff-call (push) Has been cancelled
Release Drafter / Update Release Draft (push) Has been cancelled
Force Sync to Aliyun / sync (push) Has been cancelled
Update Version / update-version (push) Has been cancelled
Sequential Lint and Type Check / pyright-call (push) Has been cancelled
减少数据库查询次数,提高数据库查询方面性能 (#2030)
* 🐛 修复数据库超时问题

* 🔧 移除帮助图片清理功能.

*  更新插件商店功能,允许在添加插件时指定源类型为 None。优化插件 ID 查找逻辑,增强代码可读性。新增 zhenxun/ui 模块导入。

* 🔧 优化数据访问和数据库上下文逻辑,移除不必要的全局变量和日志信息,调整日志级别为调试,提升代码可读性和性能。
2025-08-26 16:53:14 +08:00

627 lines
22 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import Any, ClassVar, Generic, TypeVar, cast
from zhenxun.services.cache import Cache, CacheRoot, cache_config
from zhenxun.services.cache.config import COMPOSITE_KEY_SEPARATOR, CacheMode
from zhenxun.services.db_context import Model, with_db_timeout
from zhenxun.services.log import logger
T = TypeVar("T", bound=Model)
cache = CacheRoot.cache_dict("DB_TEST_BAN", 10, int)
class DataAccess(Generic[T]):
"""数据访问层,根据配置决定是否使用缓存
使用示例:
```python
from zhenxun.services import DataAccess
from zhenxun.models.plugin_info import PluginInfo
# 创建数据访问对象
plugin_dao = DataAccess(PluginInfo)
# 获取单个数据
plugin = await plugin_dao.get(module="example_module")
# 获取所有数据
all_plugins = await plugin_dao.all()
# 筛选数据
enabled_plugins = await plugin_dao.filter(status=True)
# 创建数据
new_plugin = await plugin_dao.create(
module="new_module",
name="新插件",
status=True
)
```
"""
# 添加缓存统计信息
_cache_stats: ClassVar[dict] = {}
# 空结果标记
_NULL_RESULT = "__NULL_RESULT_PLACEHOLDER__"
# 默认空结果缓存时间(秒)- 设置为5分钟避免频繁查询数据库
_NULL_RESULT_TTL = 300
@classmethod
def set_null_result_ttl(cls, seconds: int) -> None:
"""设置空结果缓存时间
参数:
seconds: 缓存时间(秒)
"""
if seconds < 0:
raise ValueError("缓存时间不能为负数")
cls._NULL_RESULT_TTL = seconds
logger.info(f"已设置DataAccess空结果缓存时间为 {seconds}")
@classmethod
def get_null_result_ttl(cls) -> int:
"""获取空结果缓存时间
返回:
int: 缓存时间(秒)
"""
return cls._NULL_RESULT_TTL
def __init__(
self, model_cls: type[T], key_field: str = "id", cache_type: str | None = None
):
"""初始化数据访问对象
参数:
model_cls: 模型类
key_field: 主键字段
"""
self.model_cls = model_cls
self.key_field = getattr(model_cls, "cache_key_field", key_field)
self.cache_type = getattr(model_cls, "cache_type", cache_type)
if not self.cache_type:
raise ValueError("缓存类型不能为空")
self.cache = Cache(self.cache_type)
# 初始化缓存统计
if self.cache_type not in self._cache_stats:
self._cache_stats[self.cache_type] = {
"hits": 0, # 缓存命中次数
"misses": 0, # 缓存未命中次数
"null_hits": 0, # 空结果缓存命中次数
"sets": 0, # 缓存设置次数
"null_sets": 0, # 空结果缓存设置次数
"deletes": 0, # 缓存删除次数
}
@classmethod
def get_cache_stats(cls):
"""获取缓存统计信息"""
result = []
for cache_type, stats in cls._cache_stats.items():
hits = stats["hits"]
null_hits = stats.get("null_hits", 0)
misses = stats["misses"]
total = hits + null_hits + misses
hit_rate = ((hits + null_hits) / total * 100) if total > 0 else 0
result.append(
{
"cache_type": cache_type,
"hits": hits,
"null_hits": null_hits,
"misses": misses,
"sets": stats["sets"],
"null_sets": stats.get("null_sets", 0),
"deletes": stats["deletes"],
"hit_rate": f"{hit_rate:.2f}%",
}
)
return result
@classmethod
def reset_cache_stats(cls):
"""重置缓存统计信息"""
for stats in cls._cache_stats.values():
stats["hits"] = 0
stats["null_hits"] = 0
stats["misses"] = 0
stats["sets"] = 0
stats["null_sets"] = 0
stats["deletes"] = 0
def _build_cache_key_from_kwargs(self, **kwargs) -> str | None:
"""从关键字参数构建缓存键
参数:
**kwargs: 关键字参数
返回:
str | None: 缓存键如果无法构建则返回None
"""
if isinstance(self.key_field, tuple):
# 多字段主键
key_parts = []
key_parts.extend(str(kwargs.get(field, "")) for field in self.key_field)
return COMPOSITE_KEY_SEPARATOR.join(key_parts) if key_parts else None
elif self.key_field in kwargs:
# 单字段主键
return str(kwargs[self.key_field])
return None
async def _get_with_cache(
self, db_query_func, allow_not_exist: bool = True, *args, **kwargs
) -> T | None:
"""带缓存的通用获取方法
参数:
db_query_func: 数据库查询函数
allow_not_exist: 是否允许数据不存在
*args: 查询参数
**kwargs: 查询参数
返回:
Optional[T]: 查询结果如果不存在返回None
"""
# 如果没有缓存类型,直接从数据库获取
if not self.cache_type or cache_config.cache_mode == CacheMode.NONE:
logger.debug(f"{self.model_cls.__name__} 直接从数据库获取数据: {kwargs}")
return await with_db_timeout(
db_query_func(*args, **kwargs),
operation=f"{self.model_cls.__name__}.{db_query_func.__name__}",
source="DataAccess",
)
# 尝试从缓存获取
cache_key = None
try:
# 尝试构建缓存键
cache_key = self._build_cache_key_from_kwargs(**kwargs)
# 如果成功构建缓存键,尝试从缓存获取
if cache_key is not None:
data = await self.cache.get(cache_key)
logger.debug(
f"{self.model_cls.__name__} key: {cache_key}"
f" 从缓存获取到的数据 {type(data)}: {data}"
)
if data == self._NULL_RESULT:
# 空结果缓存命中
self._cache_stats[self.cache_type]["null_hits"] += 1
logger.debug(
f"{self.model_cls.__name__} 从缓存获取到空结果: {cache_key}"
)
if allow_not_exist:
logger.debug(
f"{self.model_cls.__name__} 从缓存获取"
f"到空结果: {cache_key}, 允许数据不存在返回None"
)
return None
elif data:
# 缓存命中
self._cache_stats[self.cache_type]["hits"] += 1
logger.debug(
f"{self.model_cls.__name__} 从缓存获取数据成功: {cache_key}"
)
return cast(T, data)
else:
# 缓存未命中
self._cache_stats[self.cache_type]["misses"] += 1
logger.debug(f"{self.model_cls.__name__} 缓存未命中: {cache_key}")
except Exception as e:
logger.error(f"{self.model_cls.__name__} 从缓存获取数据失败: {kwargs}", e=e)
# 如果缓存中没有,从数据库获取
logger.debug(f"{self.model_cls.__name__} 从数据库获取数据: {kwargs}")
data = await db_query_func(*args, **kwargs)
# 如果获取到数据,存入缓存
if data:
try:
# 生成缓存键
cache_key = self._build_cache_key_for_item(data)
if cache_key is not None:
# 存入缓存
await self.cache.set(cache_key, data)
self._cache_stats[self.cache_type]["sets"] += 1
logger.debug(
f"{self.model_cls.__name__} 数据已存入缓存: {cache_key}"
)
except Exception as e:
logger.error(
f"{self.model_cls.__name__} 存入缓存失败,参数: {kwargs}", e=e
)
elif cache_key is not None:
# 如果没有获取到数据,缓存空结果
try:
# 存入空结果缓存,使用较短的过期时间
await self.cache.set(
cache_key, self._NULL_RESULT, expire=self._NULL_RESULT_TTL
)
self._cache_stats[self.cache_type]["null_sets"] += 1
logger.debug(
f"{self.model_cls.__name__} 空结果已存入缓存: {cache_key},"
f" TTL={self._NULL_RESULT_TTL}"
)
except Exception as e:
logger.error(
f"{self.model_cls.__name__} 存入空结果缓存失败,参数: {kwargs}", e=e
)
return data
async def get_or_none(
self, allow_not_exist: bool = True, *args, **kwargs
) -> T | None:
"""获取单条数据
参数:
allow_not_exist: 是否允许数据不存在
*args: 查询参数
**kwargs: 查询参数
返回:
Optional[T]: 查询结果如果不存在返回None
"""
return await self._get_with_cache(
self.model_cls.get_or_none, allow_not_exist, *args, **kwargs
)
async def safe_get_or_none(
self, allow_not_exist: bool = True, *args, **kwargs
) -> T | None:
"""安全的获取单条数据
参数:
allow_not_exist: 是否允许数据不存在
*args: 查询参数
**kwargs: 查询参数
返回:
Optional[T]: 查询结果如果不存在返回None
"""
return await self._get_with_cache(
self.model_cls.safe_get_or_none, allow_not_exist, *args, **kwargs
)
async def get_by_func_or_none(
self, func, allow_not_exist: bool = True, *args, **kwargs
) -> T | None:
"""根据函数获取数据
参数:
func: 函数
allow_not_exist: 是否允许数据不存在
*args: 查询参数
**kwargs: 查询参数
"""
return await self._get_with_cache(func, allow_not_exist, *args, **kwargs)
async def clear_cache(self, **kwargs) -> bool:
"""只清除缓存,不影响数据库数据
参数:
**kwargs: 查询参数,必须包含主键字段
返回:
bool: 是否成功清除缓存
"""
# 如果没有缓存类型直接返回True
if not self.cache_type or cache_config.cache_mode == CacheMode.NONE:
return True
try:
# 构建缓存键
cache_key = self._build_cache_key_from_kwargs(**kwargs)
if cache_key is None:
if isinstance(self.key_field, tuple):
# 如果是复合键,检查缺少哪些字段
missing_fields = [
field for field in self.key_field if field not in kwargs
]
logger.error(
f"清除{self.model_cls.__name__}缓存失败: "
f"缺少主键字段 {', '.join(missing_fields)}"
)
else:
logger.error(
f"清除{self.model_cls.__name__}缓存失败: "
f"缺少主键字段 {self.key_field}"
)
return False
# 删除缓存
await self.cache.delete(cache_key)
self._cache_stats[self.cache_type]["deletes"] += 1
logger.debug(f"已清除{self.model_cls.__name__}缓存: {cache_key}")
return True
except Exception as e:
logger.error(f"清除{self.model_cls.__name__}缓存失败", e=e)
return False
def _build_composite_key(self, data: T) -> str | None:
"""构建复合缓存键
参数:
data: 数据对象
返回:
str | None: 构建的缓存键如果无法构建则返回None
"""
# 如果是元组,表示多个字段组成键
if isinstance(self.key_field, tuple):
# 构建键参数列表
key_parts = []
for field in self.key_field:
value = getattr(data, field, "")
key_parts.append(value if value is not None else "")
# 如果没有有效参数返回None
return COMPOSITE_KEY_SEPARATOR.join(key_parts) if key_parts else None
elif hasattr(data, self.key_field):
value = getattr(data, self.key_field, None)
return str(value) if value is not None else None
return None
def _build_cache_key_for_item(self, item: T) -> str | None:
"""为数据项构建缓存键
参数:
item: 数据项
返回:
str | None: 缓存键如果无法生成则返回None
"""
# 如果没有缓存类型返回None
if not self.cache_type:
return None
# 获取缓存类型的配置信息
cache_model = CacheRoot.get_model(self.cache_type)
if not cache_model.key_format:
# 常规处理,使用主键作为缓存键
return self._build_composite_key(item)
# 构建键参数字典
key_parts = []
# 从格式字符串中提取所需的字段名
import re
field_names = re.findall(r"{([^}]+)}", cache_model.key_format)
# 收集所有字段值
for field in field_names:
value = getattr(item, field, "")
key_parts.append(value if value is not None else "")
return COMPOSITE_KEY_SEPARATOR.join(key_parts)
async def _cache_items(self, data_list: list[T]) -> None:
"""将数据列表存入缓存
参数:
data_list: 数据列表
"""
if (
not data_list
or not self.cache_type
or cache_config.cache_mode == CacheMode.NONE
):
return
try:
# 遍历数据列表,将每条数据存入缓存
cached_count = 0
for item in data_list:
cache_key = self._build_cache_key_for_item(item)
if cache_key is not None:
await self.cache.set(cache_key, item)
cached_count += 1
self._cache_stats[self.cache_type]["sets"] += 1
logger.debug(
f"{self.model_cls.__name__} 批量缓存: {cached_count}/{len(data_list)}"
)
except Exception as e:
logger.error(f"{self.model_cls.__name__} 批量缓存失败", e=e)
async def filter(self, *args, **kwargs) -> list[T]:
"""筛选数据
参数:
*args: 查询参数
**kwargs: 查询参数
返回:
List[T]: 查询结果列表
"""
# 从数据库获取数据
logger.debug(f"{self.model_cls.__name__} filter: 从数据库查询, 参数: {kwargs}")
data_list = await self.model_cls.filter(*args, **kwargs)
logger.debug(
f"{self.model_cls.__name__} filter: 查询结果数量: {len(data_list)}"
)
# 将数据存入缓存
await self._cache_items(data_list)
return data_list
async def all(self) -> list[T]:
"""获取所有数据
返回:
List[T]: 所有数据列表
"""
# 直接从数据库获取
logger.debug(f"{self.model_cls.__name__} all: 从数据库查询所有数据")
data_list = await self.model_cls.all()
logger.debug(f"{self.model_cls.__name__} all: 查询结果数量: {len(data_list)}")
# 将数据存入缓存
await self._cache_items(data_list)
return data_list
async def count(self, *args, **kwargs) -> int:
"""获取数据数量
参数:
*args: 查询参数
**kwargs: 查询参数
返回:
int: 数据数量
"""
# 直接从数据库获取数量
return await self.model_cls.filter(*args, **kwargs).count()
async def exists(self, *args, **kwargs) -> bool:
"""判断数据是否存在
参数:
*args: 查询参数
**kwargs: 查询参数
返回:
bool: 是否存在
"""
# 直接从数据库判断是否存在
return await self.model_cls.filter(*args, **kwargs).exists()
async def create(self, **kwargs) -> T:
"""创建数据
参数:
**kwargs: 创建参数
返回:
T: 创建的数据
"""
# 创建数据
logger.debug(f"{self.model_cls.__name__} create: 创建数据, 参数: {kwargs}")
data = await self.model_cls.create(**kwargs)
# 如果有缓存类型,将数据存入缓存
if self.cache_type and cache_config.cache_mode != CacheMode.NONE:
try:
# 生成缓存键
cache_key = self._build_cache_key_for_item(data)
if cache_key is not None:
# 存入缓存
await self.cache.set(cache_key, data)
self._cache_stats[self.cache_type]["sets"] += 1
logger.debug(
f"{self.model_cls.__name__} create: "
f"新创建的数据已存入缓存: {cache_key}"
)
except Exception as e:
logger.error(
f"{self.model_cls.__name__} create: 存入缓存失败,参数: {kwargs}",
e=e,
)
return data
async def update_or_create(
self, defaults: dict[str, Any] | None = None, **kwargs
) -> tuple[T, bool]:
"""更新或创建数据
参数:
defaults: 默认值
**kwargs: 查询参数
返回:
tuple[T, bool]: (数据, 是否创建)
"""
# 更新或创建数据
data, created = await self.model_cls.update_or_create(
defaults=defaults, **kwargs
)
# 如果有缓存类型,将数据存入缓存
if self.cache_type and cache_config.cache_mode != CacheMode.NONE:
try:
# 生成缓存键
cache_key = self._build_cache_key_for_item(data)
if cache_key is not None:
# 存入缓存
await self.cache.set(cache_key, data)
self._cache_stats[self.cache_type]["sets"] += 1
logger.debug(f"更新或创建的数据已存入缓存: {cache_key}")
except Exception as e:
logger.error(f"存入缓存失败,参数: {kwargs}", e=e)
return data, created
async def delete(self, *args, **kwargs) -> int:
"""删除数据
参数:
*args: 查询参数
**kwargs: 查询参数
返回:
int: 删除的数据数量
"""
logger.debug(f"{self.model_cls.__name__} delete: 删除数据, 参数: {kwargs}")
# 如果有缓存类型且有key_field参数先尝试删除缓存
if self.cache_type and cache_config.cache_mode != CacheMode.NONE:
try:
# 尝试构建缓存键
cache_key = self._build_cache_key_from_kwargs(**kwargs)
if cache_key is not None:
# 如果成功构建缓存键,直接删除缓存
await self.cache.delete(cache_key)
self._cache_stats[self.cache_type]["deletes"] += 1
logger.debug(
f"{self.model_cls.__name__} delete: 已删除缓存: {cache_key}"
)
else:
# 否则需要先查询出要删除的数据,然后删除对应的缓存
items = await self.model_cls.filter(*args, **kwargs)
logger.debug(
f"{self.model_cls.__name__} delete:"
f" 查询到 {len(items)} 条要删除的数据"
)
for item in items:
item_cache_key = self._build_cache_key_for_item(item)
if item_cache_key is not None:
await self.cache.delete(item_cache_key)
self._cache_stats[self.cache_type]["deletes"] += 1
if items:
logger.debug(
f"{self.model_cls.__name__} delete:"
f" 已删除 {len(items)} 条数据的缓存"
)
except Exception as e:
logger.error(f"{self.model_cls.__name__} delete: 删除缓存失败", e=e)
# 删除数据
result = await self.model_cls.filter(*args, **kwargs).delete()
logger.debug(
f"{self.model_cls.__name__} delete: 已从数据库删除 {result} 条数据"
)
return result
def _generate_cache_key(self, data: T) -> str:
"""根据数据对象生成缓存键
参数:
data: 数据对象
返回:
str: 缓存键
"""
# 使用新方法构建复合键
if composite_key := self._build_composite_key(data):
return composite_key
# 如果无法生成复合键,生成一个唯一键
return f"object_{id(data)}"