mirror of
https://github.com/zhenxun-org/zhenxun_bot.git
synced 2025-12-14 21:52:56 +08:00
- 【LLM服务】 - `LLMResponse` 模型现在支持 `images: list[bytes]`,允许模型返回多张图片。 - LLM适配器 (`base.py`, `gemini.py`) 和 API 层 (`api.py`, `service.py`) 已更新以处理多图片响应。 - 响应验证逻辑已调整,以检查 `images` 列表而非单个 `image_bytes`。 - 【UI渲染服务】 - 引入组件“皮肤”(variant)概念,允许为同一组件提供不同视觉风格。 - 改进了 `manifest.json` 的加载、合并和缓存机制,支持基础清单与皮肤清单的递归合并。 - `ThemeManager` 现在会缓存已加载的清单,并在主题重载时清除缓存。 - 增强了资源解析器 (`ResourceResolver`),支持 `@` 命名空间路径和更健壮的相对路径处理。 - 独立模板现在会继承主 Jinja 环境的过滤器。 - 【工具函数】 - 引入 `dump_json_safely` 工具函数,用于更安全地序列化包含 Pydantic 模型、枚举等复杂类型的对象为 JSON。 - LLM 服务中的请求体和缓存键生成已改用 `dump_json_safely`。 - 优化了 `format_usage_for_markdown` 函数,改进了 Markdown 文本的格式化,确保块级元素前有正确换行,并正确处理段落内硬换行。 Co-authored-by: webjoin111 <455457521@qq.com>
586 lines
22 KiB
Python
586 lines
22 KiB
Python
"""
|
||
Gemini API 适配器
|
||
"""
|
||
|
||
import base64
|
||
from typing import TYPE_CHECKING, Any
|
||
|
||
from zhenxun.services.log import logger
|
||
|
||
from ..types.exceptions import LLMErrorCode, LLMException
|
||
from ..utils import sanitize_schema_for_llm
|
||
from .base import BaseAdapter, RequestData, ResponseData
|
||
|
||
if TYPE_CHECKING:
|
||
from ..config.generation import LLMGenerationConfig
|
||
from ..service import LLMModel
|
||
from ..types.content import LLMMessage
|
||
from ..types.enums import EmbeddingTaskType
|
||
from ..types.models import LLMToolCall
|
||
from ..types.protocols import ToolExecutable
|
||
|
||
|
||
class GeminiAdapter(BaseAdapter):
|
||
"""Gemini API 适配器"""
|
||
|
||
@property
|
||
def api_type(self) -> str:
|
||
return "gemini"
|
||
|
||
@property
|
||
def supported_api_types(self) -> list[str]:
|
||
return ["gemini"]
|
||
|
||
def get_base_headers(self, api_key: str) -> dict[str, str]:
|
||
"""获取基础请求头"""
|
||
from zhenxun.utils.user_agent import get_user_agent
|
||
|
||
headers = get_user_agent()
|
||
headers.update({"Content-Type": "application/json"})
|
||
headers["x-goog-api-key"] = api_key
|
||
|
||
return headers
|
||
|
||
async def prepare_advanced_request(
|
||
self,
|
||
model: "LLMModel",
|
||
api_key: str,
|
||
messages: list["LLMMessage"],
|
||
config: "LLMGenerationConfig | None" = None,
|
||
tools: dict[str, "ToolExecutable"] | None = None,
|
||
tool_choice: str | dict[str, Any] | None = None,
|
||
) -> RequestData:
|
||
"""准备高级请求"""
|
||
effective_config = config if config is not None else model._generation_config
|
||
|
||
endpoint = self._get_gemini_endpoint(model, effective_config)
|
||
url = self.get_api_url(model, endpoint)
|
||
headers = self.get_base_headers(api_key)
|
||
|
||
gemini_contents: list[dict[str, Any]] = []
|
||
system_instruction_parts: list[dict[str, Any]] | None = None
|
||
|
||
for msg in messages:
|
||
current_parts: list[dict[str, Any]] = []
|
||
if msg.role == "system":
|
||
if isinstance(msg.content, str):
|
||
system_instruction_parts = [{"text": msg.content}]
|
||
elif isinstance(msg.content, list):
|
||
system_instruction_parts = [
|
||
await part.convert_for_api_async("gemini")
|
||
for part in msg.content
|
||
]
|
||
continue
|
||
|
||
elif msg.role == "user":
|
||
if isinstance(msg.content, str):
|
||
current_parts.append({"text": msg.content})
|
||
elif isinstance(msg.content, list):
|
||
for part_obj in msg.content:
|
||
current_parts.append(
|
||
await part_obj.convert_for_api_async("gemini")
|
||
)
|
||
gemini_contents.append({"role": "user", "parts": current_parts})
|
||
|
||
elif msg.role == "assistant" or msg.role == "model":
|
||
if isinstance(msg.content, str) and msg.content:
|
||
current_parts.append({"text": msg.content})
|
||
elif isinstance(msg.content, list):
|
||
for part_obj in msg.content:
|
||
current_parts.append(
|
||
await part_obj.convert_for_api_async("gemini")
|
||
)
|
||
|
||
if msg.tool_calls:
|
||
import json
|
||
|
||
for call in msg.tool_calls:
|
||
current_parts.append(
|
||
{
|
||
"functionCall": {
|
||
"name": call.function.name,
|
||
"args": json.loads(call.function.arguments),
|
||
}
|
||
}
|
||
)
|
||
if current_parts:
|
||
gemini_contents.append({"role": "model", "parts": current_parts})
|
||
|
||
elif msg.role == "tool":
|
||
if not msg.name:
|
||
raise ValueError("Gemini 工具消息必须包含 'name' 字段(函数名)。")
|
||
|
||
import json
|
||
|
||
try:
|
||
content_str = (
|
||
msg.content
|
||
if isinstance(msg.content, str)
|
||
else str(msg.content)
|
||
)
|
||
tool_result_obj = json.loads(content_str)
|
||
except json.JSONDecodeError:
|
||
content_str = (
|
||
msg.content
|
||
if isinstance(msg.content, str)
|
||
else str(msg.content)
|
||
)
|
||
logger.warning(
|
||
f"工具 {msg.name} 的结果不是有效的 JSON: {content_str}. "
|
||
f"包装为原始字符串。"
|
||
)
|
||
tool_result_obj = {"raw_output": content_str}
|
||
|
||
if isinstance(tool_result_obj, list):
|
||
logger.debug(
|
||
f"工具 '{msg.name}' 的返回结果是列表,"
|
||
f"正在为Gemini API包装为JSON对象。"
|
||
)
|
||
final_response_payload = {"result": tool_result_obj}
|
||
elif not isinstance(tool_result_obj, dict):
|
||
final_response_payload = {"result": tool_result_obj}
|
||
else:
|
||
final_response_payload = tool_result_obj
|
||
|
||
current_parts.append(
|
||
{
|
||
"functionResponse": {
|
||
"name": msg.name,
|
||
"response": final_response_payload,
|
||
}
|
||
}
|
||
)
|
||
gemini_contents.append({"role": "function", "parts": current_parts})
|
||
|
||
body: dict[str, Any] = {"contents": gemini_contents}
|
||
|
||
if system_instruction_parts:
|
||
body["systemInstruction"] = {"parts": system_instruction_parts}
|
||
|
||
all_tools_for_request = []
|
||
if tools:
|
||
import asyncio
|
||
|
||
from zhenxun.utils.pydantic_compat import model_dump
|
||
|
||
definition_tasks = [
|
||
executable.get_definition() for executable in tools.values()
|
||
]
|
||
tool_definitions = await asyncio.gather(*definition_tasks)
|
||
|
||
function_declarations = []
|
||
for tool_def in tool_definitions:
|
||
tool_def.parameters = sanitize_schema_for_llm(
|
||
tool_def.parameters, api_type="gemini"
|
||
)
|
||
function_declarations.append(model_dump(tool_def))
|
||
|
||
if function_declarations:
|
||
all_tools_for_request.append(
|
||
{"functionDeclarations": function_declarations}
|
||
)
|
||
|
||
if effective_config:
|
||
if getattr(effective_config, "enable_grounding", False):
|
||
has_explicit_gs_tool = any(
|
||
"googleSearch" in tool_item for tool_item in all_tools_for_request
|
||
)
|
||
if not has_explicit_gs_tool:
|
||
all_tools_for_request.append({"googleSearch": {}})
|
||
logger.debug("隐式启用 Google Search 工具进行信息来源关联。")
|
||
|
||
if getattr(effective_config, "enable_code_execution", False):
|
||
has_explicit_ce_tool = any(
|
||
"codeExecution" in tool_item for tool_item in all_tools_for_request
|
||
)
|
||
if not has_explicit_ce_tool:
|
||
all_tools_for_request.append({"codeExecution": {}})
|
||
logger.debug("隐式启用代码执行工具。")
|
||
|
||
if all_tools_for_request:
|
||
body["tools"] = all_tools_for_request
|
||
|
||
final_tool_choice = tool_choice
|
||
if final_tool_choice is None and effective_config:
|
||
final_tool_choice = getattr(effective_config, "tool_choice", None)
|
||
|
||
if final_tool_choice:
|
||
if isinstance(final_tool_choice, str):
|
||
mode_upper = final_tool_choice.upper()
|
||
if mode_upper in ["AUTO", "NONE", "ANY"]:
|
||
body["toolConfig"] = {"functionCallingConfig": {"mode": mode_upper}}
|
||
else:
|
||
body["toolConfig"] = self._convert_tool_choice_to_gemini(
|
||
final_tool_choice
|
||
)
|
||
else:
|
||
body["toolConfig"] = self._convert_tool_choice_to_gemini(
|
||
final_tool_choice
|
||
)
|
||
|
||
final_generation_config = self._build_gemini_generation_config(
|
||
model, effective_config
|
||
)
|
||
if final_generation_config:
|
||
body["generationConfig"] = final_generation_config
|
||
|
||
safety_settings = self._build_safety_settings(effective_config)
|
||
if safety_settings:
|
||
body["safetySettings"] = safety_settings
|
||
|
||
return RequestData(url=url, headers=headers, body=body)
|
||
|
||
def apply_config_override(
|
||
self,
|
||
model: "LLMModel",
|
||
body: dict[str, Any],
|
||
config: "LLMGenerationConfig | None" = None,
|
||
) -> dict[str, Any]:
|
||
"""应用配置覆盖 - Gemini 不需要额外的配置覆盖"""
|
||
return body
|
||
|
||
def _get_gemini_endpoint(
|
||
self, model: "LLMModel", config: "LLMGenerationConfig | None" = None
|
||
) -> str:
|
||
"""根据配置选择Gemini API端点"""
|
||
if config:
|
||
if getattr(config, "enable_code_execution", False):
|
||
return f"/v1beta/models/{model.model_name}:generateContent"
|
||
|
||
if getattr(config, "enable_grounding", False):
|
||
return f"/v1beta/models/{model.model_name}:generateContent"
|
||
|
||
return f"/v1beta/models/{model.model_name}:generateContent"
|
||
|
||
def _convert_tool_choice_to_gemini(
|
||
self, tool_choice_value: str | dict[str, Any]
|
||
) -> dict[str, Any]:
|
||
"""转换工具选择策略为Gemini格式"""
|
||
if isinstance(tool_choice_value, str):
|
||
mode_upper = tool_choice_value.upper()
|
||
if mode_upper in ["AUTO", "NONE", "ANY"]:
|
||
return {"functionCallingConfig": {"mode": mode_upper}}
|
||
else:
|
||
logger.warning(
|
||
f"不支持的 tool_choice 字符串值: '{tool_choice_value}'。"
|
||
f"回退到 AUTO。"
|
||
)
|
||
return {"functionCallingConfig": {"mode": "AUTO"}}
|
||
|
||
elif isinstance(tool_choice_value, dict):
|
||
if (
|
||
tool_choice_value.get("type") == "function"
|
||
and "function" in tool_choice_value
|
||
):
|
||
func_name = tool_choice_value["function"].get("name")
|
||
if func_name:
|
||
return {
|
||
"functionCallingConfig": {
|
||
"mode": "ANY",
|
||
"allowedFunctionNames": [func_name],
|
||
}
|
||
}
|
||
else:
|
||
logger.warning(
|
||
f"tool_choice dict 中的函数名无效: {tool_choice_value}。"
|
||
f"回退到 AUTO。"
|
||
)
|
||
return {"functionCallingConfig": {"mode": "AUTO"}}
|
||
|
||
elif "functionCallingConfig" in tool_choice_value:
|
||
return {
|
||
"functionCallingConfig": tool_choice_value["functionCallingConfig"]
|
||
}
|
||
|
||
else:
|
||
logger.warning(
|
||
f"不支持的 tool_choice dict 值: {tool_choice_value}。回退到 AUTO。"
|
||
)
|
||
return {"functionCallingConfig": {"mode": "AUTO"}}
|
||
|
||
logger.warning(
|
||
f"tool_choice 的类型无效: {type(tool_choice_value)}。回退到 AUTO。"
|
||
)
|
||
return {"functionCallingConfig": {"mode": "AUTO"}}
|
||
|
||
def _build_gemini_generation_config(
|
||
self, model: "LLMModel", config: "LLMGenerationConfig | None" = None
|
||
) -> dict[str, Any]:
|
||
"""构建Gemini生成配置"""
|
||
effective_config = config if config is not None else model._generation_config
|
||
|
||
if not effective_config:
|
||
return {}
|
||
|
||
generation_config = effective_config.to_api_params(
|
||
api_type="gemini", model_name=model.model_name
|
||
)
|
||
|
||
if generation_config:
|
||
param_keys = list(generation_config.keys())
|
||
logger.debug(
|
||
f"构建Gemini生成配置完成,包含 {len(generation_config)} 个参数: "
|
||
f"{param_keys}"
|
||
)
|
||
|
||
return generation_config
|
||
|
||
def _build_safety_settings(
|
||
self, config: "LLMGenerationConfig | None" = None
|
||
) -> list[dict[str, Any]] | None:
|
||
"""构建安全设置"""
|
||
if not config:
|
||
return None
|
||
|
||
safety_settings = []
|
||
|
||
safety_categories = [
|
||
"HARM_CATEGORY_HARASSMENT",
|
||
"HARM_CATEGORY_HATE_SPEECH",
|
||
"HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
||
"HARM_CATEGORY_DANGEROUS_CONTENT",
|
||
]
|
||
|
||
custom_safety_settings = getattr(config, "safety_settings", None)
|
||
if custom_safety_settings:
|
||
for category, threshold in custom_safety_settings.items():
|
||
safety_settings.append({"category": category, "threshold": threshold})
|
||
else:
|
||
from ..config.providers import get_gemini_safety_threshold
|
||
|
||
threshold = get_gemini_safety_threshold()
|
||
for category in safety_categories:
|
||
safety_settings.append({"category": category, "threshold": threshold})
|
||
|
||
return safety_settings if safety_settings else None
|
||
|
||
def parse_response(
|
||
self,
|
||
model: "LLMModel",
|
||
response_json: dict[str, Any],
|
||
is_advanced: bool = False,
|
||
) -> ResponseData:
|
||
"""解析API响应"""
|
||
return self._parse_response(model, response_json, is_advanced)
|
||
|
||
def _parse_response(
|
||
self,
|
||
model: "LLMModel",
|
||
response_json: dict[str, Any],
|
||
is_advanced: bool = False,
|
||
) -> ResponseData:
|
||
"""解析 Gemini API 响应"""
|
||
_ = is_advanced
|
||
self.validate_response(response_json)
|
||
|
||
try:
|
||
if "image_generation" in response_json and isinstance(
|
||
response_json["image_generation"], dict
|
||
):
|
||
candidates_source = response_json["image_generation"]
|
||
else:
|
||
candidates_source = response_json
|
||
|
||
candidates = candidates_source.get("candidates", [])
|
||
usage_info = response_json.get("usageMetadata")
|
||
|
||
if not candidates:
|
||
logger.debug("Gemini响应中没有candidates。")
|
||
return ResponseData(text="", raw_response=response_json)
|
||
|
||
candidate = candidates[0]
|
||
|
||
if candidate.get("finishReason") in [
|
||
"RECITATION",
|
||
"OTHER",
|
||
] and not candidate.get("content"):
|
||
logger.warning(
|
||
f"Gemini candidate finished with reason "
|
||
f"'{candidate.get('finishReason')}' and no content."
|
||
)
|
||
return ResponseData(
|
||
text="",
|
||
raw_response=response_json,
|
||
usage_info=response_json.get("usageMetadata"),
|
||
)
|
||
|
||
content_data = candidate.get("content", {})
|
||
parts = content_data.get("parts", [])
|
||
|
||
text_content = ""
|
||
images_bytes: list[bytes] = []
|
||
parsed_tool_calls: list["LLMToolCall"] | None = None
|
||
thought_summary_parts = []
|
||
answer_parts = []
|
||
|
||
for part in parts:
|
||
if "text" in part:
|
||
answer_parts.append(part["text"])
|
||
elif "thought" in part:
|
||
thought_summary_parts.append(part["thought"])
|
||
elif "thoughtSummary" in part:
|
||
thought_summary_parts.append(part["thoughtSummary"])
|
||
elif "inlineData" in part:
|
||
inline_data = part["inlineData"]
|
||
if "data" in inline_data:
|
||
images_bytes.append(base64.b64decode(inline_data["data"]))
|
||
|
||
elif "functionCall" in part:
|
||
if parsed_tool_calls is None:
|
||
parsed_tool_calls = []
|
||
fc_data = part["functionCall"]
|
||
try:
|
||
import json
|
||
|
||
from ..types.models import LLMToolCall, LLMToolFunction
|
||
|
||
call_id = f"call_{model.provider_name}_{len(parsed_tool_calls)}"
|
||
parsed_tool_calls.append(
|
||
LLMToolCall(
|
||
id=call_id,
|
||
function=LLMToolFunction(
|
||
name=fc_data["name"],
|
||
arguments=json.dumps(fc_data["args"]),
|
||
),
|
||
)
|
||
)
|
||
except KeyError as e:
|
||
logger.warning(
|
||
f"解析Gemini functionCall时缺少键: {fc_data}, 错误: {e}"
|
||
)
|
||
except Exception as e:
|
||
logger.warning(
|
||
f"解析Gemini functionCall时出错: {fc_data}, 错误: {e}"
|
||
)
|
||
elif "codeExecutionResult" in part:
|
||
result = part["codeExecutionResult"]
|
||
if result.get("outcome") == "OK":
|
||
output = result.get("output", "")
|
||
answer_parts.append(f"\n[代码执行结果]:\n```\n{output}\n```\n")
|
||
else:
|
||
answer_parts.append(
|
||
f"\n[代码执行失败]: {result.get('outcome', 'UNKNOWN')}\n"
|
||
)
|
||
|
||
if thought_summary_parts:
|
||
full_thought_summary = "\n".join(thought_summary_parts).strip()
|
||
full_answer = "".join(answer_parts).strip()
|
||
|
||
formatted_parts = []
|
||
if full_thought_summary:
|
||
formatted_parts.append(f"🤔 **思考过程**\n\n{full_thought_summary}")
|
||
if full_answer:
|
||
separator = "\n\n---\n\n" if full_thought_summary else ""
|
||
formatted_parts.append(f"{separator}✅ **回答**\n\n{full_answer}")
|
||
|
||
text_content = "".join(formatted_parts)
|
||
else:
|
||
text_content = "".join(answer_parts)
|
||
|
||
usage_info = response_json.get("usageMetadata")
|
||
|
||
grounding_metadata_obj = None
|
||
if grounding_data := candidate.get("groundingMetadata"):
|
||
try:
|
||
from ..types.models import LLMGroundingMetadata
|
||
|
||
grounding_metadata_obj = LLMGroundingMetadata(**grounding_data)
|
||
except Exception as e:
|
||
logger.warning(f"无法解析Grounding元数据: {grounding_data}, {e}")
|
||
|
||
return ResponseData(
|
||
text=text_content,
|
||
tool_calls=parsed_tool_calls,
|
||
images=images_bytes if images_bytes else None,
|
||
usage_info=usage_info,
|
||
raw_response=response_json,
|
||
grounding_metadata=grounding_metadata_obj,
|
||
)
|
||
|
||
except Exception as e:
|
||
logger.error(f"解析 Gemini 响应失败: {e}", e=e)
|
||
raise LLMException(
|
||
f"解析API响应失败: {e}",
|
||
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
||
cause=e,
|
||
)
|
||
|
||
def prepare_embedding_request(
|
||
self,
|
||
model: "LLMModel",
|
||
api_key: str,
|
||
texts: list[str],
|
||
task_type: "EmbeddingTaskType | str",
|
||
**kwargs: Any,
|
||
) -> RequestData:
|
||
"""准备文本嵌入请求"""
|
||
api_model_name = model.model_name
|
||
if not api_model_name.startswith("models/"):
|
||
api_model_name = f"models/{api_model_name}"
|
||
|
||
url = self.get_api_url(model, f"/{api_model_name}:batchEmbedContents")
|
||
headers = self.get_base_headers(api_key)
|
||
|
||
requests_payload = []
|
||
for text_content in texts:
|
||
request_item: dict[str, Any] = {
|
||
"content": {"parts": [{"text": text_content}]},
|
||
}
|
||
|
||
from ..types.enums import EmbeddingTaskType
|
||
|
||
if task_type and task_type != EmbeddingTaskType.RETRIEVAL_DOCUMENT:
|
||
request_item["task_type"] = str(task_type).upper()
|
||
if title := kwargs.get("title"):
|
||
request_item["title"] = title
|
||
if output_dimensionality := kwargs.get("output_dimensionality"):
|
||
request_item["output_dimensionality"] = output_dimensionality
|
||
|
||
requests_payload.append(request_item)
|
||
|
||
body = {"requests": requests_payload}
|
||
return RequestData(url=url, headers=headers, body=body)
|
||
|
||
def parse_embedding_response(
|
||
self, response_json: dict[str, Any]
|
||
) -> list[list[float]]:
|
||
"""解析文本嵌入响应"""
|
||
try:
|
||
embeddings_data = response_json["embeddings"]
|
||
return [item["values"] for item in embeddings_data]
|
||
except KeyError as e:
|
||
logger.error(f"解析Gemini嵌入响应时缺少键: {e}. 响应: {response_json}")
|
||
raise LLMException(
|
||
"Gemini嵌入响应格式错误",
|
||
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
||
details={"error": str(e)},
|
||
)
|
||
except Exception as e:
|
||
logger.error(
|
||
f"解析Gemini嵌入响应时发生未知错误: {e}. 响应: {response_json}"
|
||
)
|
||
raise LLMException(
|
||
f"解析Gemini嵌入响应失败: {e}",
|
||
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
||
cause=e,
|
||
)
|
||
|
||
def validate_embedding_response(self, response_json: dict[str, Any]) -> None:
|
||
"""验证嵌入响应"""
|
||
super().validate_embedding_response(response_json)
|
||
if "embeddings" not in response_json or not isinstance(
|
||
response_json["embeddings"], list
|
||
):
|
||
raise LLMException(
|
||
"Gemini嵌入响应缺少'embeddings'字段或格式不正确",
|
||
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
||
details=response_json,
|
||
)
|
||
for item in response_json["embeddings"]:
|
||
if "values" not in item:
|
||
raise LLMException(
|
||
"Gemini嵌入响应的条目中缺少'values'字段",
|
||
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
||
details=response_json,
|
||
)
|