zhenxun_bot/zhenxun/services/llm/config/generation.py
Rumio 7c153721f0
Some checks failed
检查bot是否运行正常 / bot check (push) Waiting to run
Sequential Lint and Type Check / ruff-call (push) Waiting to run
Sequential Lint and Type Check / pyright-call (push) Blocked by required conditions
Release Drafter / Update Release Draft (push) Waiting to run
Force Sync to Aliyun / sync (push) Waiting to run
Update Version / update-version (push) Waiting to run
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, javascript-typescript) (push) Has been cancelled
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, python) (push) Has been cancelled
♻️ refactor!: 重构LLM服务架构并统一Pydantic兼容性处理 (#2002)
* ♻️ refactor(pydantic): 提取 Pydantic 兼容函数到独立模块

* ♻️ refactor!(llm): 重构LLM服务,引入现代化工具和执行器架构

🏗️ **架构变更**
- 引入ToolProvider/ToolExecutable协议,取代ToolRegistry
- 新增LLMToolExecutor,分离工具调用逻辑
- 新增BaseMemory抽象,解耦会话状态管理

🔄 **API重构**
- 移除:analyze, analyze_multimodal, pipeline_chat
- 新增:generate_structured, run_with_tools
- 重构:chat, search, code变为无状态调用

🛠️ **工具系统**
- 新增@function_tool装饰器
- 统一工具定义到ToolExecutable协议
- 移除MCP工具系统和mcp_tools.json

---------

Co-authored-by: webjoin111 <455457521@qq.com>
2025-08-04 23:36:12 +08:00

274 lines
10 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
LLM 生成配置相关类和函数
"""
from typing import Any
from pydantic import BaseModel, Field
from zhenxun.services.log import logger
from zhenxun.utils.pydantic_compat import model_dump
from ..types.enums import ResponseFormat
from ..types.exceptions import LLMErrorCode, LLMException
class ModelConfigOverride(BaseModel):
"""模型配置覆盖参数"""
temperature: float | None = Field(
default=None, ge=0.0, le=2.0, description="生成温度"
)
max_tokens: int | None = Field(default=None, gt=0, description="最大输出token数")
top_p: float | None = Field(default=None, ge=0.0, le=1.0, description="核采样参数")
top_k: int | None = Field(default=None, gt=0, description="Top-K采样参数")
frequency_penalty: float | None = Field(
default=None, ge=-2.0, le=2.0, description="频率惩罚"
)
presence_penalty: float | None = Field(
default=None, ge=-2.0, le=2.0, description="存在惩罚"
)
repetition_penalty: float | None = Field(
default=None, ge=0.0, le=2.0, description="重复惩罚"
)
stop: list[str] | str | None = Field(default=None, description="停止序列")
response_format: ResponseFormat | dict[str, Any] | None = Field(
default=None, description="期望的响应格式"
)
response_mime_type: str | None = Field(
default=None, description="响应MIME类型Gemini专用"
)
response_schema: dict[str, Any] | None = Field(
default=None, description="JSON响应模式"
)
thinking_budget: float | None = Field(
default=None, ge=0.0, le=1.0, description="思考预算"
)
include_thoughts: bool | None = Field(
default=None, description="是否在响应中包含思维过程Gemini专用"
)
safety_settings: dict[str, str] | None = Field(default=None, description="安全设置")
response_modalities: list[str] | None = Field(
default=None, description="响应模态类型"
)
enable_code_execution: bool | None = Field(
default=None, description="是否启用代码执行"
)
enable_grounding: bool | None = Field(
default=None, description="是否启用信息来源关联"
)
enable_caching: bool | None = Field(default=None, description="是否启用响应缓存")
custom_params: dict[str, Any] | None = Field(default=None, description="自定义参数")
def to_dict(self) -> dict[str, Any]:
"""转换为字典排除None值"""
model_data = model_dump(self, exclude_none=True)
result = {}
for key, value in model_data.items():
if key == "custom_params" and isinstance(value, dict):
result.update(value)
else:
result[key] = value
return result
def merge_with_base_config(
self,
base_temperature: float | None = None,
base_max_tokens: int | None = None,
) -> dict[str, Any]:
"""与基础配置合并,覆盖参数优先"""
merged = {}
if base_temperature is not None:
merged["temperature"] = base_temperature
if base_max_tokens is not None:
merged["max_tokens"] = base_max_tokens
override_dict = self.to_dict()
merged.update(override_dict)
return merged
class LLMGenerationConfig(ModelConfigOverride):
"""LLM 生成配置,继承模型配置覆盖参数"""
def to_api_params(self, api_type: str, model_name: str) -> dict[str, Any]:
"""转换为API参数支持不同API类型的参数名映射"""
_ = model_name
params = {}
if self.temperature is not None:
params["temperature"] = self.temperature
if self.max_tokens is not None:
if api_type == "gemini":
params["maxOutputTokens"] = self.max_tokens
else:
params["max_tokens"] = self.max_tokens
if api_type == "gemini":
if self.top_k is not None:
params["topK"] = self.top_k
if self.top_p is not None:
params["topP"] = self.top_p
else:
if self.top_k is not None:
params["top_k"] = self.top_k
if self.top_p is not None:
params["top_p"] = self.top_p
if api_type in ["openai", "deepseek", "zhipu", "general_openai_compat"]:
if self.frequency_penalty is not None:
params["frequency_penalty"] = self.frequency_penalty
if self.presence_penalty is not None:
params["presence_penalty"] = self.presence_penalty
if self.repetition_penalty is not None:
if api_type == "openai":
logger.warning("OpenAI官方API不支持repetition_penalty参数已忽略")
else:
params["repetition_penalty"] = self.repetition_penalty
if self.response_format is not None:
if isinstance(self.response_format, dict):
if api_type in ["openai", "zhipu", "deepseek", "general_openai_compat"]:
params["response_format"] = self.response_format
logger.debug(
f"{api_type} 使用自定义 response_format: "
f"{self.response_format}"
)
elif self.response_format == ResponseFormat.JSON:
if api_type in ["openai", "zhipu", "deepseek", "general_openai_compat"]:
params["response_format"] = {"type": "json_object"}
logger.debug(f"{api_type} 启用 JSON 对象输出模式")
elif api_type == "gemini":
params["responseMimeType"] = "application/json"
if self.response_schema:
params["responseSchema"] = self.response_schema
logger.debug(f"{api_type} 启用 JSON MIME 类型输出模式")
if self.custom_params:
custom_mapped = apply_api_specific_mappings(self.custom_params, api_type)
params.update(custom_mapped)
if api_type == "gemini":
if (
self.response_format != ResponseFormat.JSON
and self.response_mime_type is not None
):
params["responseMimeType"] = self.response_mime_type
logger.debug(
f"使用显式设置的 responseMimeType: {self.response_mime_type}"
)
if self.response_schema is not None and "responseSchema" not in params:
params["responseSchema"] = self.response_schema
if self.thinking_budget is not None or self.include_thoughts is not None:
thinking_config = params.setdefault("thinkingConfig", {})
if self.thinking_budget is not None:
max_budget = 24576
budget_value = int(self.thinking_budget * max_budget)
thinking_config["thinkingBudget"] = budget_value
logger.debug(
f"已将 thinking_budget (float: {self.thinking_budget}) "
f"转换为 Gemini API 的整数格式: {budget_value}"
)
if self.include_thoughts is not None:
thinking_config["includeThoughts"] = self.include_thoughts
logger.debug(f"已设置 includeThoughts: {self.include_thoughts}")
if self.safety_settings is not None:
params["safetySettings"] = self.safety_settings
if self.response_modalities is not None:
params["responseModalities"] = self.response_modalities
logger.debug(f"{api_type}转换配置参数: {len(params)}个参数")
return params
def validate_override_params(
override_config: dict[str, Any] | LLMGenerationConfig | None,
) -> LLMGenerationConfig:
"""验证和标准化覆盖参数"""
if override_config is None:
return LLMGenerationConfig()
if isinstance(override_config, dict):
try:
filtered_config = {
k: v for k, v in override_config.items() if v is not None
}
return LLMGenerationConfig(**filtered_config)
except Exception as e:
logger.warning(f"覆盖配置参数验证失败: {e}")
raise LLMException(
f"无效的覆盖配置参数: {e}",
code=LLMErrorCode.CONFIGURATION_ERROR,
cause=e,
)
return override_config
def apply_api_specific_mappings(
params: dict[str, Any], api_type: str
) -> dict[str, Any]:
"""应用API特定的参数映射"""
mapped_params = params.copy()
if api_type == "gemini":
if "max_tokens" in mapped_params:
mapped_params["maxOutputTokens"] = mapped_params.pop("max_tokens")
if "top_k" in mapped_params:
mapped_params["topK"] = mapped_params.pop("top_k")
if "top_p" in mapped_params:
mapped_params["topP"] = mapped_params.pop("top_p")
unsupported = ["frequency_penalty", "presence_penalty", "repetition_penalty"]
for param in unsupported:
if param in mapped_params:
logger.warning(f"Gemini 原生API不支持参数 '{param}',已忽略")
mapped_params.pop(param)
elif api_type in ["openai", "deepseek", "zhipu", "general_openai_compat"]:
if "repetition_penalty" in mapped_params and api_type == "openai":
logger.warning("OpenAI官方API不支持repetition_penalty参数已忽略")
mapped_params.pop("repetition_penalty")
if "stop" in mapped_params:
stop_value = mapped_params["stop"]
if isinstance(stop_value, str):
mapped_params["stop"] = [stop_value]
return mapped_params
def create_generation_config_from_kwargs(**kwargs) -> LLMGenerationConfig:
"""从关键字参数创建生成配置"""
model_fields = getattr(LLMGenerationConfig, "model_fields", {})
known_fields = set(model_fields.keys())
known_params = {}
custom_params = {}
for key, value in kwargs.items():
if key in known_fields:
known_params[key] = value
else:
custom_params[key] = value
if custom_params:
known_params["custom_params"] = custom_params
return LLMGenerationConfig(**known_params)