mirror of
https://github.com/zhenxun-org/zhenxun_bot.git
synced 2025-12-15 14:22:55 +08:00
645 lines
22 KiB
Python
645 lines
22 KiB
Python
from collections.abc import Callable
|
||
from datetime import datetime
|
||
from functools import wraps
|
||
import inspect
|
||
from typing import Any, ClassVar, Generic, TypeVar
|
||
|
||
from aiocache import Cache as AioCache
|
||
from aiocache.base import BaseCache
|
||
from aiocache.serializers import JsonSerializer
|
||
from nonebot.compat import model_dump
|
||
from nonebot.utils import is_coroutine_callable
|
||
from pydantic import BaseModel
|
||
from tortoise.fields.base import Field
|
||
|
||
from zhenxun.services.log import logger
|
||
|
||
__all__ = ["Cache", "CacheData", "CacheRoot"]
|
||
|
||
T = TypeVar("T")
|
||
|
||
|
||
class DbCacheException(Exception):
|
||
"""缓存相关异常"""
|
||
|
||
def __init__(self, info: str):
|
||
self.info = info
|
||
|
||
def __str__(self) -> str:
|
||
return self.info
|
||
|
||
|
||
def validate_name(func: Callable):
|
||
"""验证缓存名称是否存在的装饰器"""
|
||
|
||
def wrapper(self, name: str, *args, **kwargs):
|
||
_name = name.upper()
|
||
if _name not in CacheManager._data:
|
||
raise DbCacheException(f"缓存数据 {name} 不存在")
|
||
return func(self, _name, *args, **kwargs)
|
||
|
||
return wrapper
|
||
|
||
|
||
class CacheGetter(BaseModel, Generic[T]):
|
||
"""缓存数据获取器"""
|
||
|
||
get_func: Callable[..., Any] | None = None
|
||
get_all_func: Callable[..., Any] | None = None
|
||
|
||
async def get(self, cache_data: "CacheData", key: str, *args, **kwargs) -> T:
|
||
"""获取单个缓存数据"""
|
||
if not self.get_func:
|
||
data = await cache_data.get_key(key)
|
||
if cache_data.result_model:
|
||
return cache_data._deserialize_value(data, cache_data.result_model)
|
||
return data
|
||
|
||
if is_coroutine_callable(self.get_func):
|
||
data = await self.get_func(cache_data, key, *args, **kwargs)
|
||
else:
|
||
data = self.get_func(cache_data, key, *args, **kwargs)
|
||
|
||
if cache_data.result_model:
|
||
return cache_data._deserialize_value(data, cache_data.result_model)
|
||
return data
|
||
|
||
async def get_all(self, cache_data: "CacheData", *args, **kwargs) -> dict[str, T]:
|
||
"""获取所有缓存数据"""
|
||
if not self.get_all_func:
|
||
data = await cache_data.get_all_data()
|
||
if cache_data.result_model:
|
||
return {
|
||
k: cache_data._deserialize_value(v, cache_data.result_model)
|
||
for k, v in data.items()
|
||
}
|
||
return data
|
||
|
||
if is_coroutine_callable(self.get_all_func):
|
||
data = await self.get_all_func(cache_data, *args, **kwargs)
|
||
else:
|
||
data = self.get_all_func(cache_data, *args, **kwargs)
|
||
|
||
if cache_data.result_model:
|
||
return {
|
||
k: cache_data._deserialize_value(v, cache_data.result_model)
|
||
for k, v in data.items()
|
||
}
|
||
return data
|
||
|
||
|
||
class CacheData(BaseModel):
|
||
"""缓存数据模型"""
|
||
|
||
name: str
|
||
func: Callable[..., Any]
|
||
getter: CacheGetter | None = None
|
||
updater: Callable[..., Any] | None = None
|
||
with_refresh: Callable[..., Any] | None = None
|
||
expire: int = 600 # 默认10分钟过期
|
||
reload_count: int = 0
|
||
incremental_update: bool = True
|
||
_cache_instance: BaseCache | None = None
|
||
result_model: type | None = None
|
||
_keys: set[str] = set() # 存储所有缓存键
|
||
|
||
class Config:
|
||
arbitrary_types_allowed = True
|
||
underscore_attrs_are_private = True
|
||
|
||
@property
|
||
def _cache(self) -> BaseCache:
|
||
"""获取aiocache实例"""
|
||
if self._cache_instance is None:
|
||
self._cache_instance = AioCache(
|
||
AioCache.MEMORY,
|
||
serializer=JsonSerializer(),
|
||
namespace="zhenxun_cache",
|
||
timeout=30, # 操作超时时间
|
||
ttl=self.expire, # 设置默认过期时间
|
||
)
|
||
return self._cache_instance
|
||
|
||
def _deserialize_value(self, value: Any, target_type: type | None = None) -> Any:
|
||
"""反序列化值,将JSON数据转换回原始类型
|
||
|
||
Args:
|
||
value: 需要反序列化的值
|
||
target_type: 目标类型,用于指导反序列化
|
||
|
||
Returns:
|
||
反序列化后的值
|
||
"""
|
||
if value is None:
|
||
return None
|
||
|
||
# 如果是字典且指定了目标类型
|
||
if isinstance(value, dict) and target_type:
|
||
# 处理Tortoise-ORM Model
|
||
if hasattr(target_type, "_meta"):
|
||
# 处理字段值
|
||
processed_value = {}
|
||
for field_name, field_value in value.items():
|
||
field: Field = target_type._meta.fields_map.get(field_name)
|
||
if field:
|
||
# 跳过反向关系字段
|
||
if hasattr(field, "_related_name"):
|
||
continue
|
||
# 处理 CharEnumField
|
||
if hasattr(field, "enum_class"):
|
||
try:
|
||
processed_value[field_name] = field.enum_class(
|
||
field_value
|
||
)
|
||
except ValueError:
|
||
processed_value[field_name] = None
|
||
else:
|
||
processed_value[field_name] = field_value
|
||
|
||
logger.debug(f"处理后的值: {processed_value}")
|
||
|
||
# 创建模型实例
|
||
instance = target_type()
|
||
# 设置字段值
|
||
for field_name, field_value in processed_value.items():
|
||
if field_name in target_type._meta.fields_map:
|
||
field = target_type._meta.fields_map[field_name]
|
||
# 设置字段值
|
||
try:
|
||
if hasattr(field, "to_python_value"):
|
||
if not field.field_type:
|
||
logger.warning(f"字段 {field_name} 类型为空")
|
||
continue
|
||
field_value = field.to_python_value(field_value)
|
||
setattr(instance, field_name, field_value)
|
||
except Exception as e:
|
||
logger.warning(f"设置字段 {field_name} 失败: {e}")
|
||
|
||
# 设置 _saved_in_db 标志
|
||
instance._saved_in_db = True
|
||
return instance
|
||
# 处理Pydantic模型
|
||
elif hasattr(target_type, "model_validate"):
|
||
return target_type.model_validate(value)
|
||
elif hasattr(target_type, "from_dict"):
|
||
return target_type.from_dict(value)
|
||
elif hasattr(target_type, "parse_obj"):
|
||
return target_type.parse_obj(value)
|
||
else:
|
||
return target_type(**value)
|
||
|
||
# 处理列表类型
|
||
if isinstance(value, list):
|
||
if not value:
|
||
return value
|
||
if (
|
||
target_type
|
||
and hasattr(target_type, "__origin__")
|
||
and target_type.__origin__ is list
|
||
):
|
||
item_type = target_type.__args__[0]
|
||
return [self._deserialize_value(item, item_type) for item in value]
|
||
return [self._deserialize_value(item) for item in value]
|
||
|
||
# 处理字典类型
|
||
if isinstance(value, dict):
|
||
return {k: self._deserialize_value(v) for k, v in value.items()}
|
||
|
||
# 处理基本类型
|
||
if isinstance(value, int | float | str | bool):
|
||
return value
|
||
|
||
return value
|
||
|
||
async def get_data(self) -> Any:
|
||
"""从缓存获取数据"""
|
||
try:
|
||
data = await self._cache.get(self.name)
|
||
logger.debug(f"获取缓存 {self.name} 数据: {data}")
|
||
|
||
# 如果数据为空,尝试重新加载
|
||
# if data is None:
|
||
# logger.debug(f"缓存 {self.name} 数据为空,尝试重新加载")
|
||
# try:
|
||
# if self.has_args():
|
||
# new_data = (
|
||
# await self.func()
|
||
# if is_coroutine_callable(self.func)
|
||
# else self.func()
|
||
# )
|
||
# else:
|
||
# new_data = (
|
||
# await self.func()
|
||
# if is_coroutine_callable(self.func)
|
||
# else self.func()
|
||
# )
|
||
|
||
# await self.set_data(new_data)
|
||
# self.reload_count += 1
|
||
# logger.info(f"重新加载缓存 {self.name} 完成")
|
||
# return new_data
|
||
# except Exception as e:
|
||
# logger.error(f"重新加载缓存 {self.name} 失败: {e}")
|
||
# return None
|
||
|
||
# 使用 result_model 进行反序列化
|
||
if self.result_model:
|
||
return self._deserialize_value(data, self.result_model)
|
||
|
||
return data
|
||
except Exception as e:
|
||
logger.error(f"获取缓存 {self.name} 失败: {e}")
|
||
return None
|
||
|
||
def _serialize_value(self, value: Any) -> Any:
|
||
"""序列化值,将数据转换为JSON可序列化的格式
|
||
|
||
Args:
|
||
value: 需要序列化的值
|
||
|
||
Returns:
|
||
JSON可序列化的值
|
||
"""
|
||
if value is None:
|
||
return None
|
||
|
||
# 处理datetime
|
||
if isinstance(value, datetime):
|
||
return value.isoformat()
|
||
|
||
# 处理Tortoise-ORM Model
|
||
if hasattr(value, "_meta") and hasattr(value, "__dict__"):
|
||
result = {}
|
||
for field in value._meta.fields:
|
||
try:
|
||
field_value = getattr(value, field)
|
||
# 跳过反向关系字段
|
||
if isinstance(field_value, list | set) and hasattr(
|
||
field_value, "_related_name"
|
||
):
|
||
continue
|
||
# 跳过外键关系字段
|
||
if hasattr(field_value, "_meta"):
|
||
field_value = getattr(
|
||
field_value, value._meta.fields[field].related_name or "id"
|
||
)
|
||
result[field] = self._serialize_value(field_value)
|
||
except AttributeError:
|
||
continue
|
||
return result
|
||
|
||
# 处理Pydantic模型
|
||
elif isinstance(value, BaseModel):
|
||
return model_dump(value)
|
||
elif isinstance(value, dict):
|
||
# 处理字典
|
||
return {str(k): self._serialize_value(v) for k, v in value.items()}
|
||
elif isinstance(value, list | tuple | set):
|
||
# 处理列表、元组、集合
|
||
return [self._serialize_value(item) for item in value]
|
||
elif isinstance(value, int | float | str | bool):
|
||
# 基本类型直接返回
|
||
return value
|
||
else:
|
||
# 其他类型转换为字符串
|
||
return str(value)
|
||
|
||
async def set_data(self, value: Any):
|
||
"""设置缓存数据"""
|
||
try:
|
||
# 1. 序列化数据
|
||
serialized_value = self._serialize_value(value)
|
||
logger.debug(f"设置缓存 {self.name} 原始数据: {value}")
|
||
logger.debug(f"设置缓存 {self.name} 序列化后数据: {serialized_value}")
|
||
|
||
# 2. 删除旧数据
|
||
await self._cache.delete(self.name)
|
||
logger.debug(f"删除缓存 {self.name} 旧数据")
|
||
|
||
# 3. 设置新数据
|
||
await self._cache.set(self.name, serialized_value, ttl=self.expire)
|
||
logger.debug(f"设置缓存 {self.name} 新数据完成")
|
||
|
||
except Exception as e:
|
||
logger.error(f"设置缓存 {self.name} 失败: {e}")
|
||
raise # 重新抛出异常,让上层处理
|
||
|
||
async def delete_data(self):
|
||
"""删除缓存数据"""
|
||
try:
|
||
await self._cache.delete(self.name)
|
||
except Exception as e:
|
||
logger.error(f"删除缓存 {self.name}", e=e)
|
||
|
||
async def get(self, key: str, *args, **kwargs) -> Any:
|
||
"""获取缓存"""
|
||
if not self.reload_count and not self.incremental_update:
|
||
await self.reload(*args, **kwargs)
|
||
|
||
if not self.getter:
|
||
return await self.get_key(key)
|
||
|
||
return await self.getter.get(self, key, *args, **kwargs)
|
||
|
||
async def get_all(self, *args, **kwargs) -> dict[str, Any]:
|
||
"""获取所有缓存数据"""
|
||
if not self.reload_count and not self.incremental_update:
|
||
await self.reload(*args, **kwargs)
|
||
|
||
if not self.getter:
|
||
return await self.get_all_data()
|
||
|
||
return await self.getter.get_all(self, *args, **kwargs)
|
||
|
||
async def update(self, key: str, value: Any = None, *args, **kwargs):
|
||
"""更新单个缓存项"""
|
||
if not self.updater:
|
||
logger.warning(f"缓存 {self.name} 未配置更新方法")
|
||
return
|
||
|
||
current_data = await self.get_key(key) or {}
|
||
if is_coroutine_callable(self.updater):
|
||
await self.updater(current_data, key, value, *args, **kwargs)
|
||
else:
|
||
self.updater(current_data, key, value, *args, **kwargs)
|
||
|
||
await self.set_key(key, current_data)
|
||
logger.debug(f"更新缓存 {self.name}.{key}")
|
||
|
||
async def refresh(self, *args, **kwargs):
|
||
"""刷新缓存数据"""
|
||
if not self.with_refresh:
|
||
return await self.reload(*args, **kwargs)
|
||
|
||
current_data = await self.get_data()
|
||
if current_data:
|
||
if is_coroutine_callable(self.with_refresh):
|
||
await self.with_refresh(current_data, *args, **kwargs)
|
||
else:
|
||
self.with_refresh(current_data, *args, **kwargs)
|
||
await self.set_data(current_data)
|
||
logger.debug(f"刷新缓存 {self.name}")
|
||
|
||
async def reload(self, *args, **kwargs):
|
||
"""重新加载全部数据"""
|
||
try:
|
||
if self.has_args():
|
||
new_data = (
|
||
await self.func(*args, **kwargs)
|
||
if is_coroutine_callable(self.func)
|
||
else self.func(*args, **kwargs)
|
||
)
|
||
else:
|
||
new_data = (
|
||
await self.func()
|
||
if is_coroutine_callable(self.func)
|
||
else self.func()
|
||
)
|
||
|
||
# 如果是字典,则分别存储每个键值对
|
||
if isinstance(new_data, dict):
|
||
for key, value in new_data.items():
|
||
await self.set_key(key, value)
|
||
else:
|
||
# 如果不是字典,则存储为单个键值对
|
||
await self.set_key("default", new_data)
|
||
|
||
self.reload_count += 1
|
||
logger.info(f"重新加载缓存 {self.name} 完成")
|
||
except Exception as e:
|
||
logger.error(f"重新加载缓存 {self.name} 失败: {e}")
|
||
raise
|
||
|
||
def has_args(self) -> bool:
|
||
"""检查函数是否需要参数"""
|
||
sig = inspect.signature(self.func)
|
||
return any(
|
||
param.kind
|
||
in (
|
||
param.POSITIONAL_OR_KEYWORD,
|
||
param.POSITIONAL_ONLY,
|
||
param.VAR_POSITIONAL,
|
||
)
|
||
for param in sig.parameters.values()
|
||
)
|
||
|
||
async def get_key(self, key: str) -> Any:
|
||
"""获取缓存中指定键的数据
|
||
|
||
Args:
|
||
key: 要获取的键名
|
||
|
||
Returns:
|
||
键对应的值,如果不存在返回None
|
||
"""
|
||
cache_key = self._get_cache_key(key)
|
||
try:
|
||
data = await self._cache.get(cache_key)
|
||
logger.debug(f"获取缓存 {cache_key} 数据: {data}")
|
||
|
||
if self.result_model:
|
||
return self._deserialize_value(data, self.result_model)
|
||
return data
|
||
except Exception as e:
|
||
logger.error(f"获取缓存 {cache_key} 失败: {e}")
|
||
return None
|
||
|
||
async def get_keys(self, keys: list[str]) -> dict[str, Any]:
|
||
"""获取缓存中多个键的数据
|
||
|
||
Args:
|
||
keys: 要获取的键名列表
|
||
|
||
Returns:
|
||
包含所有请求键值的字典,不存在的键值为None
|
||
"""
|
||
try:
|
||
data = await self.get_data()
|
||
if isinstance(data, dict):
|
||
return {key: data.get(key) for key in keys}
|
||
return dict.fromkeys(keys)
|
||
except Exception as e:
|
||
logger.error(f"获取缓存 {self.name} 的多个键失败: {e}")
|
||
return dict.fromkeys(keys)
|
||
|
||
def _get_cache_key(self, key: str) -> str:
|
||
"""获取缓存键名"""
|
||
return f"{self.name}:{key}"
|
||
|
||
async def get_all_data(self) -> dict[str, Any]:
|
||
"""获取所有缓存数据"""
|
||
try:
|
||
result = {}
|
||
for key in self._keys:
|
||
# 提取原始键名(去掉前缀)
|
||
original_key = key.split(":", 1)[1]
|
||
data = await self._cache.get(key)
|
||
if self.result_model:
|
||
result[original_key] = self._deserialize_value(
|
||
data, self.result_model
|
||
)
|
||
else:
|
||
result[original_key] = data
|
||
return result
|
||
except Exception as e:
|
||
logger.error(f"获取所有缓存数据失败: {e}")
|
||
return {}
|
||
|
||
async def set_key(self, key: str, value: Any):
|
||
"""设置指定键的缓存数据"""
|
||
cache_key = self._get_cache_key(key)
|
||
try:
|
||
serialized_value = self._serialize_value(value)
|
||
await self._cache.set(cache_key, serialized_value, ttl=self.expire)
|
||
self._keys.add(cache_key) # 添加到键列表
|
||
logger.debug(f"设置缓存 {cache_key} 数据完成")
|
||
except Exception as e:
|
||
logger.error(f"设置缓存 {cache_key} 失败: {e}")
|
||
raise
|
||
|
||
async def delete_key(self, key: str):
|
||
"""删除指定键的缓存数据"""
|
||
cache_key = self._get_cache_key(key)
|
||
try:
|
||
await self._cache.delete(cache_key)
|
||
self._keys.discard(cache_key) # 从键列表中移除
|
||
logger.debug(f"删除缓存 {cache_key} 完成")
|
||
except Exception as e:
|
||
logger.error(f"删除缓存 {cache_key} 失败: {e}")
|
||
|
||
async def clear(self):
|
||
"""清除所有缓存数据"""
|
||
try:
|
||
for key in list(self._keys): # 使用列表复制避免在迭代时修改
|
||
await self._cache.delete(key)
|
||
self._keys.clear()
|
||
logger.debug(f"清除缓存 {self.name} 完成")
|
||
except Exception as e:
|
||
logger.error(f"清除缓存 {self.name} 失败: {e}")
|
||
|
||
|
||
class CacheManager:
|
||
"""全局缓存管理器"""
|
||
|
||
_data: ClassVar[dict[str, CacheData]] = {}
|
||
|
||
def new(self, name: str, incremental_update: bool = True, expire: int = 600):
|
||
"""注册新缓存"""
|
||
|
||
def wrapper(func: Callable):
|
||
_name = name.upper()
|
||
if _name in self._data:
|
||
raise DbCacheException(f"缓存 {name} 已存在")
|
||
|
||
self._data[_name] = CacheData(
|
||
name=_name,
|
||
func=func,
|
||
expire=expire,
|
||
incremental_update=incremental_update,
|
||
)
|
||
return func
|
||
|
||
return wrapper
|
||
|
||
def listener(self, name: str):
|
||
"""创建缓存监听器"""
|
||
|
||
def decorator(func):
|
||
@wraps(func)
|
||
async def wrapper(*args, **kwargs):
|
||
try:
|
||
return (
|
||
await func(*args, **kwargs)
|
||
if is_coroutine_callable(func)
|
||
else func(*args, **kwargs)
|
||
)
|
||
finally:
|
||
cache = self._data.get(name.upper())
|
||
if cache and cache.with_refresh:
|
||
await cache.refresh()
|
||
logger.debug(f"监听器触发缓存 {name} 刷新")
|
||
|
||
return wrapper
|
||
|
||
return decorator
|
||
|
||
@validate_name
|
||
def updater(self, name: str):
|
||
"""设置缓存更新方法"""
|
||
|
||
def wrapper(func: Callable):
|
||
self._data[name].updater = func
|
||
return func
|
||
|
||
return wrapper
|
||
|
||
@validate_name
|
||
def getter(self, name: str, result_model: type):
|
||
"""设置缓存获取方法"""
|
||
|
||
def wrapper(func: Callable):
|
||
self._data[name].getter = CacheGetter[result_model](get_func=func)
|
||
self._data[name].result_model = result_model
|
||
return func
|
||
|
||
return wrapper
|
||
|
||
@validate_name
|
||
def with_refresh(self, name: str):
|
||
"""设置缓存刷新方法"""
|
||
|
||
def wrapper(func: Callable):
|
||
self._data[name].with_refresh = func
|
||
return func
|
||
|
||
return wrapper
|
||
|
||
async def get_cache_data(self, name: str) -> Any | None:
|
||
"""获取缓存数据"""
|
||
cache = await self.get_cache(name.upper())
|
||
return await cache.get_data() if cache else None
|
||
|
||
async def get_cache(self, name: str) -> CacheData | None:
|
||
"""获取缓存对象"""
|
||
return self._data.get(name.upper())
|
||
|
||
async def get(self, name: str, *args, **kwargs) -> Any:
|
||
"""获取缓存内容"""
|
||
cache = await self.get_cache(name.upper())
|
||
return await cache.get(*args, **kwargs) if cache else None
|
||
|
||
async def update(self, name: str, key: str, value: Any = None, *args, **kwargs):
|
||
"""更新缓存项"""
|
||
cache = await self.get_cache(name.upper())
|
||
if cache:
|
||
await cache.update(key, value, *args, **kwargs)
|
||
|
||
async def reload(self, name: str, *args, **kwargs):
|
||
"""重新加载缓存"""
|
||
cache = await self.get_cache(name.upper())
|
||
if cache:
|
||
await cache.reload(*args, **kwargs)
|
||
|
||
|
||
# 全局缓存管理器实例
|
||
CacheRoot = CacheManager()
|
||
|
||
|
||
class Cache(Generic[T]):
|
||
"""类型化缓存访问接口"""
|
||
|
||
def __init__(self, module: str):
|
||
self.module = module.upper()
|
||
|
||
async def get(self, *args, **kwargs) -> T | None:
|
||
"""获取缓存"""
|
||
return await CacheRoot.get(self.module, *args, **kwargs)
|
||
|
||
async def update(self, key: str, value: Any = None, *args, **kwargs):
|
||
"""更新缓存项"""
|
||
await CacheRoot.update(self.module, key, value, *args, **kwargs)
|
||
|
||
async def reload(self, *args, **kwargs):
|
||
"""重新加载缓存"""
|
||
await CacheRoot.reload(self.module, *args, **kwargs)
|