zhenxun_bot/zhenxun/services/llm/adapters/factory.py
webjoin111 bba90e62db ♻️ refactor(llm): 重构 LLM 服务架构,引入中间件与组件化适配器
- 【重构】LLM 服务核心架构:
    - 引入中间件管道,统一处理请求生命周期(重试、密钥选择、日志、网络请求)。
    - 适配器重构为组件化设计,分离配置映射、消息转换、响应解析和工具序列化逻辑。
    - 移除 `with_smart_retry` 装饰器,其功能由中间件接管。
    - 移除 `LLMToolExecutor`,工具执行逻辑集成到 `ToolInvoker`。
- 【功能】增强配置系统:
    - `LLMGenerationConfig` 采用组件化结构(Core, Reasoning, Visual, Output, Safety, ToolConfig)。
    - 新增 `GenConfigBuilder` 提供语义化配置构建方式。
    - 新增 `LLMEmbeddingConfig` 用于嵌入专用配置。
    - `CommonOverrides` 迁移并更新至新配置结构。
- 【功能】强化工具系统:
    - 引入 `ToolInvoker` 实现更灵活的工具执行,支持回调与结构化错误。
    - `function_tool` 装饰器支持动态 Pydantic 模型创建和依赖注入 (`ToolParam`, `RunContext`)。
    - 平台原生工具支持 (`GeminiCodeExecution`, `GeminiGoogleSearch`, `GeminiUrlContext`)。
- 【功能】高级生成与嵌入:
    - `generate_structured` 方法支持 In-Context Validation and Repair (IVR) 循环和 AutoCoT (思维链) 包装。
    - 新增 `embed_query` 和 `embed_documents` 便捷嵌入 API。
    - `OpenAIImageAdapter` 支持 OpenAI 兼容的图像生成。
    - `SmartAdapter` 实现模型名称智能路由。
- 【重构】消息与类型系统:
    - `LLMContentPart` 扩展支持更多模态和代码执行相关内容。
    - `LLMMessage` 和 `LLMResponse` 结构更新,支持 `content_parts` 和思维链签名。
    - 统一 `LLMErrorCode` 和用户友好错误消息,提供更详细的网络/代理错误提示。
    - `pyproject.toml` 移除 `bilireq`,新增 `json_repair`。
- 【优化】日志与调试:
    - 引入 `DebugLogOptions`,提供细粒度日志脱敏控制。
    - 增强日志净化器,处理更多敏感数据和长字符串。
- 【清理】删除废弃模块:
    - `zhenxun/services/llm/memory.py`
    - `zhenxun/services/llm/executor.py`
    - `zhenxun/services/llm/config/presets.py`
    - `zhenxun/services/llm/types/content.py`
    - `zhenxun/services/llm/types/enums.py`
    - `zhenxun/services/llm/tools/__init__.py`
    - `zhenxun/services/llm/tools/manager.py`
2025-12-07 18:57:55 +08:00

184 lines
5.6 KiB
Python

"""
LLM 适配器工厂类
"""
import fnmatch
from typing import TYPE_CHECKING, Any, ClassVar
from ..types.exceptions import LLMErrorCode, LLMException
from ..types.models import ToolChoice
from .base import BaseAdapter, RequestData, ResponseData
if TYPE_CHECKING:
from ..config.generation import LLMEmbeddingConfig, LLMGenerationConfig
from ..service import LLMModel
from ..types import LLMMessage
class LLMAdapterFactory:
"""LLM适配器工厂类"""
_adapters: ClassVar[dict[str, BaseAdapter]] = {}
_api_type_mapping: ClassVar[dict[str, str]] = {}
@classmethod
def initialize(cls) -> None:
"""初始化默认适配器"""
if cls._adapters:
return
from .gemini import GeminiAdapter
from .openai import DeepSeekAdapter, OpenAIAdapter, OpenAIImageAdapter
cls.register_adapter(OpenAIAdapter())
cls.register_adapter(DeepSeekAdapter())
cls.register_adapter(GeminiAdapter())
cls.register_adapter(SmartAdapter())
cls.register_adapter(OpenAIImageAdapter())
@classmethod
def register_adapter(cls, adapter: BaseAdapter) -> None:
"""注册适配器"""
adapter_key = adapter.api_type
cls._adapters[adapter_key] = adapter
for api_type in adapter.supported_api_types:
cls._api_type_mapping[api_type] = adapter_key
@classmethod
def get_adapter(cls, api_type: str) -> BaseAdapter:
"""获取适配器"""
cls.initialize()
adapter_key = cls._api_type_mapping.get(api_type)
if not adapter_key:
raise LLMException(
f"不支持的API类型: {api_type}",
code=LLMErrorCode.UNKNOWN_API_TYPE,
details={
"api_type": api_type,
"supported_types": list(cls._api_type_mapping.keys()),
},
)
return cls._adapters[adapter_key]
@classmethod
def list_supported_types(cls) -> list[str]:
"""列出所有支持的API类型"""
cls.initialize()
return list(cls._api_type_mapping.keys())
@classmethod
def list_adapters(cls) -> dict[str, BaseAdapter]:
"""列出所有注册的适配器"""
cls.initialize()
return cls._adapters.copy()
def get_adapter_for_api_type(api_type: str) -> BaseAdapter:
"""获取指定API类型的适配器"""
return LLMAdapterFactory.get_adapter(api_type)
def register_adapter(adapter: BaseAdapter) -> None:
"""注册新的适配器"""
LLMAdapterFactory.register_adapter(adapter)
class SmartAdapter(BaseAdapter):
"""
智能路由适配器。
本身不处理序列化,而是根据规则委托给 OpenAIAdapter 或 GeminiAdapter。
"""
@property
def log_sanitization_context(self) -> str:
return "openai_request"
_ROUTING_RULES: ClassVar[list[tuple[str, str]]] = [
("*nano-banana*", "gemini"),
("*gemini*", "gemini"),
]
_DEFAULT_API_TYPE: ClassVar[str] = "openai"
def __init__(self):
self._adapter_cache: dict[str, BaseAdapter] = {}
@property
def api_type(self) -> str:
return "smart"
@property
def supported_api_types(self) -> list[str]:
return ["smart"]
def _get_delegate_adapter(self, model: "LLMModel") -> BaseAdapter:
"""
核心路由逻辑:决定使用哪个适配器 (带缓存)
"""
if model.model_detail.api_type:
return get_adapter_for_api_type(model.model_detail.api_type)
model_name = model.model_name
if model_name in self._adapter_cache:
return self._adapter_cache[model_name]
target_api_type = self._DEFAULT_API_TYPE
model_name_lower = model_name.lower()
for pattern, api_type in self._ROUTING_RULES:
if fnmatch.fnmatch(model_name_lower, pattern):
target_api_type = api_type
break
adapter = get_adapter_for_api_type(target_api_type)
self._adapter_cache[model_name] = adapter
return adapter
async def prepare_advanced_request(
self,
model: "LLMModel",
api_key: str,
messages: list["LLMMessage"],
config: "LLMGenerationConfig | None" = None,
tools: list[Any] | None = None,
tool_choice: "str | dict[str, Any] | ToolChoice | None" = None,
) -> RequestData:
adapter = self._get_delegate_adapter(model)
return await adapter.prepare_advanced_request(
model, api_key, messages, config, tools, tool_choice
)
def parse_response(
self,
model: "LLMModel",
response_json: dict[str, Any],
is_advanced: bool = False,
) -> ResponseData:
adapter = self._get_delegate_adapter(model)
return adapter.parse_response(model, response_json, is_advanced)
def prepare_embedding_request(
self,
model: "LLMModel",
api_key: str,
texts: list[str],
config: "LLMEmbeddingConfig",
) -> RequestData:
adapter = self._get_delegate_adapter(model)
return adapter.prepare_embedding_request(model, api_key, texts, config)
def parse_embedding_response(
self, response_json: dict[str, Any]
) -> list[list[float]]:
return get_adapter_for_api_type("openai").parse_embedding_response(
response_json
)
def convert_generation_config(
self, config: "LLMGenerationConfig", model: "LLMModel"
) -> dict[str, Any]:
adapter = self._get_delegate_adapter(model)
return adapter.convert_generation_config(config, model)