mirror of
https://github.com/zhenxun-org/zhenxun_bot.git
synced 2025-12-14 21:52:56 +08:00
- 【重构】LLM 服务核心架构:
- 引入中间件管道,统一处理请求生命周期(重试、密钥选择、日志、网络请求)。
- 适配器重构为组件化设计,分离配置映射、消息转换、响应解析和工具序列化逻辑。
- 移除 `with_smart_retry` 装饰器,其功能由中间件接管。
- 移除 `LLMToolExecutor`,工具执行逻辑集成到 `ToolInvoker`。
- 【功能】增强配置系统:
- `LLMGenerationConfig` 采用组件化结构(Core, Reasoning, Visual, Output, Safety, ToolConfig)。
- 新增 `GenConfigBuilder` 提供语义化配置构建方式。
- 新增 `LLMEmbeddingConfig` 用于嵌入专用配置。
- `CommonOverrides` 迁移并更新至新配置结构。
- 【功能】强化工具系统:
- 引入 `ToolInvoker` 实现更灵活的工具执行,支持回调与结构化错误。
- `function_tool` 装饰器支持动态 Pydantic 模型创建和依赖注入 (`ToolParam`, `RunContext`)。
- 平台原生工具支持 (`GeminiCodeExecution`, `GeminiGoogleSearch`, `GeminiUrlContext`)。
- 【功能】高级生成与嵌入:
- `generate_structured` 方法支持 In-Context Validation and Repair (IVR) 循环和 AutoCoT (思维链) 包装。
- 新增 `embed_query` 和 `embed_documents` 便捷嵌入 API。
- `OpenAIImageAdapter` 支持 OpenAI 兼容的图像生成。
- `SmartAdapter` 实现模型名称智能路由。
- 【重构】消息与类型系统:
- `LLMContentPart` 扩展支持更多模态和代码执行相关内容。
- `LLMMessage` 和 `LLMResponse` 结构更新,支持 `content_parts` 和思维链签名。
- 统一 `LLMErrorCode` 和用户友好错误消息,提供更详细的网络/代理错误提示。
- `pyproject.toml` 移除 `bilireq`,新增 `json_repair`。
- 【优化】日志与调试:
- 引入 `DebugLogOptions`,提供细粒度日志脱敏控制。
- 增强日志净化器,处理更多敏感数据和长字符串。
- 【清理】删除废弃模块:
- `zhenxun/services/llm/memory.py`
- `zhenxun/services/llm/executor.py`
- `zhenxun/services/llm/config/presets.py`
- `zhenxun/services/llm/types/content.py`
- `zhenxun/services/llm/types/enums.py`
- `zhenxun/services/llm/tools/__init__.py`
- `zhenxun/services/llm/tools/manager.py`
449 lines
15 KiB
Python
449 lines
15 KiB
Python
"""
|
||
LLM 提供商配置管理
|
||
|
||
负责注册和管理 AI 服务提供商的配置项。
|
||
"""
|
||
|
||
from functools import lru_cache
|
||
from typing import Any
|
||
|
||
from pydantic import BaseModel, Field
|
||
|
||
from zhenxun.configs.config import Config
|
||
from zhenxun.configs.utils import parse_as
|
||
from zhenxun.services.log import logger
|
||
from zhenxun.utils.manager.priority_manager import PriorityLifecycle
|
||
from zhenxun.utils.pydantic_compat import model_dump
|
||
|
||
from ..core import key_store
|
||
from ..tools import tool_provider_manager
|
||
from ..types.models import ModelDetail, ProviderConfig
|
||
|
||
AI_CONFIG_GROUP = "AI"
|
||
PROVIDERS_CONFIG_KEY = "PROVIDERS"
|
||
|
||
|
||
class DebugLogOptions(BaseModel):
|
||
"""调试日志细粒度控制"""
|
||
|
||
show_tools: bool = Field(
|
||
default=True, description="是否在日志中显示工具定义(JSON Schema)"
|
||
)
|
||
show_schema: bool = Field(
|
||
default=True, description="是否在日志中显示结构化输出Schema(response_format)"
|
||
)
|
||
show_safety: bool = Field(
|
||
default=True, description="是否在日志中显示安全设置(safetySettings)"
|
||
)
|
||
|
||
def __bool__(self) -> bool:
|
||
"""支持 bool(debug_options) 的语法,方便兼容旧逻辑。"""
|
||
return self.show_tools or self.show_schema or self.show_safety
|
||
|
||
|
||
class ClientSettings(BaseModel):
|
||
"""LLM 客户端通用设置"""
|
||
|
||
timeout: int = Field(default=300, description="API请求超时时间(秒)")
|
||
max_retries: int = Field(default=3, description="请求失败时的最大重试次数")
|
||
retry_delay: int = Field(default=2, description="请求重试的基础延迟时间(秒)")
|
||
structured_retries: int = Field(
|
||
default=2, description="结构化生成校验失败时的最大重试次数 (IVR)"
|
||
)
|
||
proxy: str | None = Field(
|
||
default=None,
|
||
description="网络代理,例如 http://127.0.0.1:7890",
|
||
)
|
||
|
||
|
||
class LLMConfig(BaseModel):
|
||
"""LLM 服务配置类"""
|
||
|
||
default_model_name: str | None = Field(
|
||
default=None,
|
||
description="LLM服务全局默认使用的模型名称 (格式: ProviderName/ModelName)",
|
||
)
|
||
client_settings: ClientSettings = Field(
|
||
default_factory=ClientSettings, description="客户端连接与重试配置"
|
||
)
|
||
providers: list[ProviderConfig] = Field(
|
||
default_factory=list, description="配置多个 AI 服务提供商及其模型信息"
|
||
)
|
||
debug_log: DebugLogOptions | bool = Field(
|
||
default_factory=DebugLogOptions,
|
||
description="LLM请求日志详情开关。支持 bool (全开/全关) 或 dict (细粒度控制)。",
|
||
)
|
||
|
||
def get_provider_by_name(self, name: str) -> ProviderConfig | None:
|
||
"""根据名称获取提供商配置
|
||
|
||
参数:
|
||
name: 提供商名称
|
||
|
||
返回:
|
||
ProviderConfig | None: 提供商配置,如果未找到则返回 None
|
||
"""
|
||
for provider in self.providers:
|
||
if provider.name == name:
|
||
return provider
|
||
return None
|
||
|
||
def get_model_by_provider_and_name(
|
||
self, provider_name: str, model_name: str
|
||
) -> tuple[ProviderConfig, ModelDetail] | None:
|
||
"""根据提供商名称和模型名称获取配置
|
||
|
||
参数:
|
||
provider_name: 提供商名称
|
||
model_name: 模型名称
|
||
|
||
返回:
|
||
tuple[ProviderConfig, ModelDetail] | None: 提供商配置和模型详情的元组,
|
||
如果未找到则返回 None
|
||
"""
|
||
provider = self.get_provider_by_name(provider_name)
|
||
if not provider:
|
||
return None
|
||
|
||
for model in provider.models:
|
||
if model.model_name == model_name:
|
||
return provider, model
|
||
return None
|
||
|
||
def list_available_models(self) -> list[dict[str, Any]]:
|
||
"""列出所有可用的模型
|
||
|
||
返回:
|
||
list[dict[str, Any]]: 模型信息列表
|
||
"""
|
||
models = []
|
||
for provider in self.providers:
|
||
for model in provider.models:
|
||
models.append(
|
||
{
|
||
"provider_name": provider.name,
|
||
"model_name": model.model_name,
|
||
"full_name": f"{provider.name}/{model.model_name}",
|
||
"is_available": model.is_available,
|
||
"is_embedding_model": model.is_embedding_model,
|
||
"api_type": provider.api_type,
|
||
}
|
||
)
|
||
return models
|
||
|
||
def validate_model_name(self, provider_model_name: str) -> bool:
|
||
"""验证模型名称格式是否正确
|
||
|
||
参数:
|
||
provider_model_name: 格式为 "ProviderName/ModelName" 的字符串
|
||
|
||
返回:
|
||
bool: 是否有效
|
||
"""
|
||
if not provider_model_name or "/" not in provider_model_name:
|
||
return False
|
||
|
||
parts = provider_model_name.split("/", 1)
|
||
if len(parts) != 2:
|
||
return False
|
||
|
||
provider_name, model_name = parts
|
||
return (
|
||
self.get_model_by_provider_and_name(provider_name, model_name) is not None
|
||
)
|
||
|
||
|
||
def get_ai_config():
|
||
"""获取 AI 配置组"""
|
||
return Config.get(AI_CONFIG_GROUP)
|
||
|
||
|
||
def get_default_providers() -> list[dict[str, Any]]:
|
||
"""获取默认的提供商配置
|
||
|
||
返回:
|
||
list[dict[str, Any]]: 默认提供商配置列表
|
||
"""
|
||
return [
|
||
{
|
||
"name": "DeepSeek",
|
||
"api_key": "YOUR_ARK_API_KEY",
|
||
"api_base": "https://api.deepseek.com",
|
||
"api_type": "openai",
|
||
"models": [
|
||
{
|
||
"model_name": "deepseek-chat",
|
||
"max_tokens": 4096,
|
||
"temperature": 0.7,
|
||
},
|
||
{
|
||
"model_name": "deepseek-reasoner",
|
||
},
|
||
],
|
||
},
|
||
{
|
||
"name": "ARK",
|
||
"api_key": "YOUR_ARK_API_KEY",
|
||
"api_base": "https://ark.cn-beijing.volces.com",
|
||
"api_type": "ark",
|
||
"models": [
|
||
{"model_name": "deepseek-r1-250528"},
|
||
{"model_name": "doubao-seed-1-6-250615"},
|
||
{"model_name": "doubao-seed-1-6-flash-250615"},
|
||
{"model_name": "doubao-seed-1-6-thinking-250615"},
|
||
],
|
||
},
|
||
{
|
||
"name": "siliconflow",
|
||
"api_key": "YOUR_ARK_API_KEY",
|
||
"api_base": "https://api.siliconflow.cn",
|
||
"api_type": "openai",
|
||
"models": [
|
||
{"model_name": "deepseek-ai/DeepSeek-V3"},
|
||
],
|
||
},
|
||
{
|
||
"name": "GLM",
|
||
"api_key": "YOUR_ARK_API_KEY",
|
||
"api_base": "https://open.bigmodel.cn",
|
||
"api_type": "zhipu",
|
||
"models": [
|
||
{"model_name": "glm-4-flash"},
|
||
{"model_name": "glm-4-plus"},
|
||
],
|
||
},
|
||
{
|
||
"name": "Gemini",
|
||
"api_key": [
|
||
"AIzaSy*****************************",
|
||
"AIzaSy*****************************",
|
||
"AIzaSy*****************************",
|
||
],
|
||
"api_base": "https://generativelanguage.googleapis.com",
|
||
"api_type": "gemini",
|
||
"models": [
|
||
{"model_name": "gemini-2.5-flash"},
|
||
{"model_name": "gemini-2.5-pro"},
|
||
{"model_name": "gemini-2.5-flash-lite"},
|
||
],
|
||
},
|
||
{
|
||
"name": "OpenRouter",
|
||
"api_key": "YOUR_OPENROUTER_API_KEY",
|
||
"api_base": "https://openrouter.ai/api",
|
||
"api_type": "openrouter",
|
||
"models": [
|
||
{"model_name": "google/gemini-2.5-pro"},
|
||
{"model_name": "google/gemini-2.5-flash"},
|
||
{"model_name": "x-ai/grok-4"},
|
||
],
|
||
},
|
||
]
|
||
|
||
|
||
def register_llm_configs():
|
||
"""注册 LLM 服务的配置项"""
|
||
logger.info("注册 LLM 服务的配置项")
|
||
|
||
llm_config = LLMConfig()
|
||
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"default_model_name",
|
||
llm_config.default_model_name,
|
||
help="LLM服务全局默认使用的模型名称 (格式: ProviderName/ModelName)",
|
||
type=str,
|
||
)
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"client_settings",
|
||
model_dump(llm_config.client_settings),
|
||
help=(
|
||
"LLM客户端高级设置。\n"
|
||
"包含: timeout(超时秒数), max_retries(重试次数), "
|
||
"retry_delay(重试延迟), structured_retries(结构化生成重试), proxy(代理)"
|
||
),
|
||
type=dict,
|
||
)
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"debug_log",
|
||
{"show_tools": True, "show_schema": True, "show_safety": True},
|
||
help=(
|
||
"LLM日志详情开关。示例: {'show_tools': True, 'show_schema': False, "
|
||
"'show_safety': False}"
|
||
),
|
||
type=dict,
|
||
)
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
"gemini_safety_threshold",
|
||
"BLOCK_NONE",
|
||
help=(
|
||
"Gemini 安全过滤阈值 "
|
||
"(BLOCK_LOW_AND_ABOVE: 阻止低级别及以上, "
|
||
"BLOCK_MEDIUM_AND_ABOVE: 阻止中等级别及以上, "
|
||
"BLOCK_ONLY_HIGH: 只阻止高级别, "
|
||
"BLOCK_NONE: 不阻止)"
|
||
),
|
||
type=str,
|
||
)
|
||
|
||
Config.add_plugin_config(
|
||
AI_CONFIG_GROUP,
|
||
PROVIDERS_CONFIG_KEY,
|
||
get_default_providers(),
|
||
help=(
|
||
"配置多个 AI 服务提供商及其模型信息。\n"
|
||
"注意:可以在特定模型配置下添加 'api_type' 以覆盖提供商的全局设置。\n"
|
||
"支持的 api_type 包括:\n"
|
||
"- 'openai': 标准 OpenAI 格式 (DeepSeek, SiliconFlow, Moonshot 等)\n"
|
||
"- 'gemini': Google Gemini API\n"
|
||
"- 'zhipu': 智谱 AI (GLM)\n"
|
||
"- 'ark': 字节跳动火山引擎 (Doubao)\n"
|
||
"- 'openrouter': OpenRouter 聚合平台\n"
|
||
"- 'openai_image': OpenAI 兼容的图像生成接口 (DALL-E)\n"
|
||
"- 'openai_responses': 支持新版 responses 格式的 OpenAI 兼容接口\n"
|
||
"- 'smart': 智能路由模式 (主要用于第三方中转场景,自动根据模型名"
|
||
"分发请求到 openai 或 gemini)"
|
||
),
|
||
default_value=[],
|
||
type=list[ProviderConfig],
|
||
)
|
||
|
||
|
||
@lru_cache(maxsize=1)
|
||
def get_llm_config() -> LLMConfig:
|
||
"""获取 LLM 配置实例"""
|
||
ai_config = get_ai_config()
|
||
|
||
raw_debug = ai_config.get("debug_log", False)
|
||
if isinstance(raw_debug, bool):
|
||
debug_log_val = DebugLogOptions(
|
||
show_tools=raw_debug, show_schema=raw_debug, show_safety=raw_debug
|
||
)
|
||
else:
|
||
debug_log_val = raw_debug
|
||
|
||
config_data = {
|
||
"default_model_name": ai_config.get("default_model_name"),
|
||
"client_settings": ai_config.get("client_settings", {}),
|
||
"debug_log": debug_log_val,
|
||
PROVIDERS_CONFIG_KEY: ai_config.get(PROVIDERS_CONFIG_KEY, []),
|
||
}
|
||
|
||
return parse_as(LLMConfig, config_data)
|
||
|
||
|
||
def get_gemini_safety_threshold() -> str:
|
||
"""获取 Gemini 安全过滤阈值配置
|
||
|
||
返回:
|
||
str: 安全过滤阈值
|
||
"""
|
||
ai_config = get_ai_config()
|
||
return ai_config.get("gemini_safety_threshold", "BLOCK_MEDIUM_AND_ABOVE")
|
||
|
||
|
||
def validate_llm_config() -> tuple[bool, list[str]]:
|
||
"""验证 LLM 配置的有效性
|
||
|
||
返回:
|
||
tuple[bool, list[str]]: (是否有效, 错误信息列表)
|
||
"""
|
||
errors = []
|
||
|
||
try:
|
||
llm_config = get_llm_config()
|
||
|
||
if llm_config.client_settings.timeout <= 0:
|
||
errors.append("timeout 必须大于 0")
|
||
|
||
if llm_config.client_settings.max_retries < 0:
|
||
errors.append("max_retries 不能小于 0")
|
||
|
||
if llm_config.client_settings.retry_delay <= 0:
|
||
errors.append("retry_delay 必须大于 0")
|
||
|
||
if not llm_config.providers:
|
||
errors.append("至少需要配置一个 AI 服务提供商")
|
||
else:
|
||
provider_names = set()
|
||
for provider in llm_config.providers:
|
||
if provider.name in provider_names:
|
||
errors.append(f"提供商名称重复: {provider.name}")
|
||
provider_names.add(provider.name)
|
||
|
||
if not provider.api_key:
|
||
errors.append(f"提供商 {provider.name} 缺少 API Key")
|
||
|
||
if not provider.models:
|
||
errors.append(f"提供商 {provider.name} 没有配置任何模型")
|
||
else:
|
||
model_names = set()
|
||
for model in provider.models:
|
||
if model.model_name in model_names:
|
||
errors.append(
|
||
f"提供商 {provider.name} 中模型名称重复: "
|
||
f"{model.model_name}"
|
||
)
|
||
model_names.add(model.model_name)
|
||
|
||
if llm_config.default_model_name:
|
||
if not llm_config.validate_model_name(llm_config.default_model_name):
|
||
errors.append(
|
||
f"默认模型 {llm_config.default_model_name} 在配置中不存在"
|
||
)
|
||
|
||
except Exception as e:
|
||
errors.append(f"配置解析失败: {e!s}")
|
||
|
||
return len(errors) == 0, errors
|
||
|
||
|
||
def set_default_model(provider_model_name: str | None) -> bool:
|
||
"""设置默认模型
|
||
|
||
参数:
|
||
provider_model_name: 模型名称,格式为 "ProviderName/ModelName",None 表示清除
|
||
|
||
返回:
|
||
bool: 是否设置成功
|
||
"""
|
||
if provider_model_name:
|
||
llm_config = get_llm_config()
|
||
if not llm_config.validate_model_name(provider_model_name):
|
||
logger.error(f"模型 {provider_model_name} 在配置中不存在")
|
||
return False
|
||
|
||
Config.set_config(
|
||
AI_CONFIG_GROUP, "default_model_name", provider_model_name, auto_save=True
|
||
)
|
||
|
||
if provider_model_name:
|
||
logger.info(f"默认模型已设置为: {provider_model_name}")
|
||
else:
|
||
logger.info("默认模型已清除")
|
||
|
||
return True
|
||
|
||
|
||
@PriorityLifecycle.on_startup(priority=10)
|
||
async def _init_llm_config_on_startup():
|
||
"""
|
||
在服务启动时主动调用一次 get_llm_config 和 key_store.initialize,
|
||
并预热工具提供者管理器。
|
||
"""
|
||
logger.info("正在初始化 LLM 配置并加载密钥状态...")
|
||
try:
|
||
get_llm_config()
|
||
await key_store.initialize()
|
||
logger.debug("LLM 配置和密钥状态初始化完成。")
|
||
|
||
logger.debug("正在预热 LLM 工具提供者管理器...")
|
||
await tool_provider_manager.initialize()
|
||
logger.debug("LLM 工具提供者管理器预热完成。")
|
||
|
||
except Exception as e:
|
||
logger.error(f"LLM 配置或密钥状态初始化时发生错误: {e}", e=e)
|