mirror of
https://github.com/zhenxun-org/zhenxun_bot.git
synced 2025-12-14 21:52:56 +08:00
- 【重构】LLM 服务核心架构:
- 引入中间件管道,统一处理请求生命周期(重试、密钥选择、日志、网络请求)。
- 适配器重构为组件化设计,分离配置映射、消息转换、响应解析和工具序列化逻辑。
- 移除 `with_smart_retry` 装饰器,其功能由中间件接管。
- 移除 `LLMToolExecutor`,工具执行逻辑集成到 `ToolInvoker`。
- 【功能】增强配置系统:
- `LLMGenerationConfig` 采用组件化结构(Core, Reasoning, Visual, Output, Safety, ToolConfig)。
- 新增 `GenConfigBuilder` 提供语义化配置构建方式。
- 新增 `LLMEmbeddingConfig` 用于嵌入专用配置。
- `CommonOverrides` 迁移并更新至新配置结构。
- 【功能】强化工具系统:
- 引入 `ToolInvoker` 实现更灵活的工具执行,支持回调与结构化错误。
- `function_tool` 装饰器支持动态 Pydantic 模型创建和依赖注入 (`ToolParam`, `RunContext`)。
- 平台原生工具支持 (`GeminiCodeExecution`, `GeminiGoogleSearch`, `GeminiUrlContext`)。
- 【功能】高级生成与嵌入:
- `generate_structured` 方法支持 In-Context Validation and Repair (IVR) 循环和 AutoCoT (思维链) 包装。
- 新增 `embed_query` 和 `embed_documents` 便捷嵌入 API。
- `OpenAIImageAdapter` 支持 OpenAI 兼容的图像生成。
- `SmartAdapter` 实现模型名称智能路由。
- 【重构】消息与类型系统:
- `LLMContentPart` 扩展支持更多模态和代码执行相关内容。
- `LLMMessage` 和 `LLMResponse` 结构更新,支持 `content_parts` 和思维链签名。
- 统一 `LLMErrorCode` 和用户友好错误消息,提供更详细的网络/代理错误提示。
- `pyproject.toml` 移除 `bilireq`,新增 `json_repair`。
- 【优化】日志与调试:
- 引入 `DebugLogOptions`,提供细粒度日志脱敏控制。
- 增强日志净化器,处理更多敏感数据和长字符串。
- 【清理】删除废弃模块:
- `zhenxun/services/llm/memory.py`
- `zhenxun/services/llm/executor.py`
- `zhenxun/services/llm/config/presets.py`
- `zhenxun/services/llm/types/content.py`
- `zhenxun/services/llm/types/enums.py`
- `zhenxun/services/llm/tools/__init__.py`
- `zhenxun/services/llm/tools/manager.py`
348 lines
15 KiB
Python
348 lines
15 KiB
Python
import copy
|
||
import re
|
||
from typing import Any
|
||
|
||
from nonebot.adapters import Message, MessageSegment
|
||
|
||
|
||
def _truncate_base64_string(value: str, threshold: int = 256) -> str:
|
||
"""如果字符串是超长的base64或data URI,则截断它。"""
|
||
if not isinstance(value, str):
|
||
return value
|
||
|
||
prefixes = ("base64://", "data:image", "data:video", "data:audio")
|
||
if value.startswith(prefixes) and len(value) > threshold:
|
||
prefix = next((p for p in prefixes if value.startswith(p)), "base64")
|
||
return f"[{prefix}_data_omitted_len={len(value)}]"
|
||
|
||
if len(value) > 1000:
|
||
return f"[long_string_omitted_len={len(value)}] {value[:20]}...{value[-20:]}"
|
||
|
||
if len(value) > 2000:
|
||
return f"[long_string_omitted_len={len(value)}] {value[:50]}...{value[-20:]}"
|
||
|
||
return value
|
||
|
||
|
||
def _truncate_vector_list(vector: list, threshold: int = 10) -> list:
|
||
"""如果列表过长(通常是embedding向量),则截断它用于日志显示。"""
|
||
if isinstance(vector, list) and len(vector) > threshold:
|
||
return [*vector[:3], f"...({len(vector)} floats omitted)...", *vector[-3:]]
|
||
return vector
|
||
|
||
|
||
def _recursive_sanitize_any(obj: Any) -> Any:
|
||
"""递归清洗任何对象中的长字符串"""
|
||
if isinstance(obj, dict):
|
||
return {k: _recursive_sanitize_any(v) for k, v in obj.items()}
|
||
elif isinstance(obj, list):
|
||
return [_recursive_sanitize_any(v) for v in obj]
|
||
elif isinstance(obj, str):
|
||
return _truncate_base64_string(obj)
|
||
return obj
|
||
|
||
|
||
def _sanitize_ui_html(html_string: str) -> str:
|
||
"""
|
||
专门用于净化UI渲染调试HTML的函数。
|
||
它会查找所有内联的base64数据(如字体、图片)并将其截断。
|
||
"""
|
||
if not isinstance(html_string, str):
|
||
return html_string
|
||
|
||
pattern = re.compile(r"(data:[^;]+;base64,)[A-Za-z0-9+/=\s]{100,}")
|
||
|
||
def replacer(match):
|
||
prefix = match.group(1)
|
||
original_len = len(match.group(0)) - len(prefix)
|
||
return f"{prefix}[...base64_omitted_len={original_len}...]"
|
||
|
||
return pattern.sub(replacer, html_string)
|
||
|
||
|
||
def _sanitize_nonebot_message(message: Message) -> Message:
|
||
"""净化nonebot.adapter.Message对象,用于日志记录。"""
|
||
sanitized_message = copy.deepcopy(message)
|
||
for seg in sanitized_message:
|
||
seg: MessageSegment
|
||
if seg.type in ("image", "record", "video"):
|
||
file_info = seg.data.get("file", "")
|
||
if isinstance(file_info, str):
|
||
seg.data["file"] = _truncate_base64_string(file_info)
|
||
return sanitized_message
|
||
|
||
|
||
def _sanitize_openai_response(response_json: dict) -> dict:
|
||
"""净化OpenAI兼容API的响应体。"""
|
||
try:
|
||
sanitized_json = copy.deepcopy(response_json)
|
||
if "choices" in sanitized_json and isinstance(sanitized_json["choices"], list):
|
||
for choice in sanitized_json["choices"]:
|
||
if "message" in choice and isinstance(choice["message"], dict):
|
||
message = choice["message"]
|
||
if "images" in message and isinstance(message["images"], list):
|
||
for i, image_info in enumerate(message["images"]):
|
||
if "image_url" in image_info and isinstance(
|
||
image_info["image_url"], dict
|
||
):
|
||
url = image_info["image_url"].get("url", "")
|
||
message["images"][i]["image_url"]["url"] = (
|
||
_truncate_base64_string(url)
|
||
)
|
||
if "reasoning_details" in message and isinstance(
|
||
message["reasoning_details"], list
|
||
):
|
||
for detail in message["reasoning_details"]:
|
||
if isinstance(detail, dict):
|
||
if "data" in detail and isinstance(detail["data"], str):
|
||
if len(detail["data"]) > 100:
|
||
detail["data"] = (
|
||
f"[encrypted_data_omitted_len={len(detail['data'])}]"
|
||
)
|
||
if "text" in detail and isinstance(detail["text"], str):
|
||
detail["text"] = _truncate_base64_string(
|
||
detail["text"], threshold=2000
|
||
)
|
||
if "data" in sanitized_json and isinstance(sanitized_json["data"], list):
|
||
for item in sanitized_json["data"]:
|
||
if "embedding" in item and isinstance(item["embedding"], list):
|
||
item["embedding"] = _truncate_vector_list(item["embedding"])
|
||
if "b64_json" in item and isinstance(item["b64_json"], str):
|
||
if len(item["b64_json"]) > 256:
|
||
item["b64_json"] = (
|
||
f"[base64_json_omitted_len={len(item['b64_json'])}]"
|
||
)
|
||
if "input" in sanitized_json and isinstance(sanitized_json["input"], list):
|
||
for item in sanitized_json["input"]:
|
||
if "content" in item and isinstance(item["content"], list):
|
||
for part in item["content"]:
|
||
if isinstance(part, dict) and part.get("type") == "input_image":
|
||
image_url = part.get("image_url")
|
||
if isinstance(image_url, str):
|
||
part["image_url"] = _truncate_base64_string(image_url)
|
||
return sanitized_json
|
||
except Exception:
|
||
return response_json
|
||
|
||
|
||
def _sanitize_openai_request(body: dict) -> dict:
|
||
"""净化OpenAI兼容API的请求体,主要截断图片base64。"""
|
||
from zhenxun.services.llm.config.providers import (
|
||
DebugLogOptions,
|
||
get_llm_config,
|
||
)
|
||
|
||
debug_conf = get_llm_config().debug_log
|
||
if isinstance(debug_conf, bool):
|
||
debug_conf = DebugLogOptions(
|
||
show_tools=debug_conf, show_schema=debug_conf, show_safety=debug_conf
|
||
)
|
||
|
||
try:
|
||
sanitized_json = _recursive_sanitize_any(copy.deepcopy(body))
|
||
if "tools" in sanitized_json and not debug_conf.show_tools:
|
||
tools = sanitized_json["tools"]
|
||
if isinstance(tools, list):
|
||
tool_names = []
|
||
for t in tools:
|
||
if isinstance(t, dict):
|
||
name = None
|
||
if "function" in t and isinstance(t["function"], dict):
|
||
name = t["function"].get("name")
|
||
if not name and "name" in t:
|
||
name = t.get("name")
|
||
tool_names.append(name or "unknown")
|
||
sanitized_json["tools"] = (
|
||
f"<{len(tool_names)} tools hidden: {', '.join(tool_names)}>"
|
||
)
|
||
|
||
if "response_format" in sanitized_json and not debug_conf.show_schema:
|
||
response_format = sanitized_json["response_format"]
|
||
if isinstance(response_format, dict):
|
||
if response_format.get("type") == "json_schema":
|
||
sanitized_json["response_format"] = {
|
||
"type": "json_schema",
|
||
"json_schema": "<JSON Schema Hidden>",
|
||
}
|
||
|
||
return sanitized_json
|
||
except Exception:
|
||
return body
|
||
|
||
|
||
def _sanitize_gemini_response(response_json: dict) -> dict:
|
||
"""净化Gemini API的响应体,处理文本和图片生成两种格式。"""
|
||
from zhenxun.services.llm.config.providers import get_llm_config
|
||
|
||
debug_mode = get_llm_config().debug_log
|
||
try:
|
||
sanitized_json = copy.deepcopy(response_json)
|
||
|
||
def _process_candidates(candidates_list: list):
|
||
"""辅助函数,用于处理任何 candidates 列表。"""
|
||
if not isinstance(candidates_list, list):
|
||
return
|
||
for candidate in candidates_list:
|
||
if "content" in candidate and isinstance(candidate["content"], dict):
|
||
content = candidate["content"]
|
||
if "parts" in content and isinstance(content["parts"], list):
|
||
for i, part in enumerate(content["parts"]):
|
||
if "inlineData" in part and isinstance(
|
||
part["inlineData"], dict
|
||
):
|
||
data = part["inlineData"].get("data", "")
|
||
if isinstance(data, str) and len(data) > 256:
|
||
content["parts"][i]["inlineData"]["data"] = (
|
||
f"[base64_data_omitted_len={len(data)}]"
|
||
)
|
||
if "thoughtSignature" in part:
|
||
signature = part.get("thoughtSignature", "")
|
||
if isinstance(signature, str) and len(signature) > 256:
|
||
content["parts"][i]["thoughtSignature"] = (
|
||
f"[signature_omitted_len={len(signature)}]"
|
||
)
|
||
if not debug_mode and isinstance(candidate, dict):
|
||
if "safetyRatings" in candidate:
|
||
candidate["safetyRatings"] = "<Safety Ratings Hidden>"
|
||
|
||
if "candidates" in sanitized_json:
|
||
_process_candidates(sanitized_json["candidates"])
|
||
|
||
if "image_generation" in sanitized_json and isinstance(
|
||
sanitized_json["image_generation"], dict
|
||
):
|
||
if "candidates" in sanitized_json["image_generation"]:
|
||
_process_candidates(sanitized_json["image_generation"]["candidates"])
|
||
|
||
if "embeddings" in sanitized_json and isinstance(
|
||
sanitized_json["embeddings"], list
|
||
):
|
||
for embedding in sanitized_json["embeddings"]:
|
||
if "values" in embedding and isinstance(embedding["values"], list):
|
||
embedding["values"] = _truncate_vector_list(embedding["values"])
|
||
|
||
if not debug_mode and "promptFeedback" in sanitized_json:
|
||
prompt_feedback = sanitized_json.get("promptFeedback") or {}
|
||
if isinstance(prompt_feedback, dict) and "safetyRatings" in prompt_feedback:
|
||
prompt_feedback["safetyRatings"] = "<Safety Ratings Hidden>"
|
||
sanitized_json["promptFeedback"] = prompt_feedback
|
||
|
||
return sanitized_json
|
||
except Exception:
|
||
return response_json
|
||
|
||
|
||
def _sanitize_gemini_request(body: dict) -> dict:
|
||
"""净化Gemini API的请求体,进行结构转换和总结。"""
|
||
from zhenxun.services.llm.config.providers import (
|
||
DebugLogOptions,
|
||
get_llm_config,
|
||
)
|
||
|
||
debug_conf = get_llm_config().debug_log
|
||
if isinstance(debug_conf, bool):
|
||
debug_conf = DebugLogOptions(
|
||
show_tools=debug_conf, show_schema=debug_conf, show_safety=debug_conf
|
||
)
|
||
|
||
try:
|
||
sanitized_body = copy.deepcopy(body)
|
||
if "tools" in sanitized_body and not debug_conf.show_tools:
|
||
tool_summary = []
|
||
for tool_group in sanitized_body["tools"]:
|
||
if (
|
||
isinstance(tool_group, dict)
|
||
and "functionDeclarations" in tool_group
|
||
):
|
||
declarations = tool_group["functionDeclarations"]
|
||
if isinstance(declarations, list):
|
||
for func in declarations:
|
||
if isinstance(func, dict):
|
||
tool_summary.append(func.get("name", "unknown"))
|
||
sanitized_body["tools"] = (
|
||
f"<{len(tool_summary)} functions hidden: {', '.join(tool_summary)}>"
|
||
)
|
||
|
||
if not debug_conf.show_safety and "safetySettings" in sanitized_body:
|
||
sanitized_body["safetySettings"] = "<Safety Settings Hidden>"
|
||
|
||
if not debug_conf.show_schema and "generationConfig" in sanitized_body:
|
||
generation_config = sanitized_body["generationConfig"]
|
||
if (
|
||
isinstance(generation_config, dict)
|
||
and "responseJsonSchema" in generation_config
|
||
):
|
||
generation_config["responseJsonSchema"] = "<JSON Schema Hidden>"
|
||
|
||
if "contents" in sanitized_body and isinstance(
|
||
sanitized_body["contents"], list
|
||
):
|
||
for content_item in sanitized_body["contents"]:
|
||
if "parts" in content_item and isinstance(content_item["parts"], list):
|
||
media_summary = []
|
||
new_parts = []
|
||
for part in content_item["parts"]:
|
||
if "inlineData" in part and isinstance(
|
||
part["inlineData"], dict
|
||
):
|
||
data = part["inlineData"].get("data")
|
||
if isinstance(data, str):
|
||
mime_type = part["inlineData"].get(
|
||
"mimeType", "unknown"
|
||
)
|
||
media_summary.append(f"{mime_type} ({len(data)} chars)")
|
||
continue
|
||
new_parts.append(part)
|
||
|
||
if "thoughtSignature" in part:
|
||
sig = part["thoughtSignature"]
|
||
if isinstance(sig, str) and len(sig) > 64:
|
||
part["thoughtSignature"] = (
|
||
f"[signature_omitted_len={len(sig)}]"
|
||
)
|
||
|
||
if media_summary:
|
||
summary_text = (
|
||
f"[多模态内容: {len(media_summary)}个文件 - "
|
||
f"{', '.join(media_summary)}]"
|
||
)
|
||
new_parts.insert(0, {"text": summary_text})
|
||
|
||
content_item["parts"] = new_parts
|
||
return sanitized_body
|
||
except Exception:
|
||
return body
|
||
|
||
|
||
def sanitize_for_logging(data: Any, context: str | None = None) -> Any:
|
||
"""
|
||
统一的日志净化入口。
|
||
|
||
Args:
|
||
data: 需要净化的数据 (dict, Message, etc.).
|
||
context: 净化场景的上下文标识,例如 'gemini_request', 'openai_response'.
|
||
|
||
Returns:
|
||
净化后的数据。
|
||
"""
|
||
if context == "nonebot_message":
|
||
if isinstance(data, Message):
|
||
return _sanitize_nonebot_message(data)
|
||
elif context == "openai_response":
|
||
if isinstance(data, dict):
|
||
return _sanitize_openai_response(data)
|
||
elif context == "gemini_response":
|
||
if isinstance(data, dict):
|
||
return _sanitize_gemini_response(data)
|
||
elif context == "gemini_request":
|
||
if isinstance(data, dict):
|
||
return _sanitize_gemini_request(data)
|
||
elif context == "openai_request":
|
||
if isinstance(data, dict):
|
||
return _sanitize_openai_request(data)
|
||
elif context == "ui_html":
|
||
if isinstance(data, str):
|
||
return _sanitize_ui_html(data)
|
||
|
||
return _recursive_sanitize_any(data)
|