zhenxun_bot/zhenxun/utils/log_sanitizer.py
webjoin111 851a7a549e feat(llm): 增强LLM服务,支持图片生成、响应验证与OpenRouter集成
- 【新功能】统一图片生成与编辑API `create_image`,支持文生图、图生图及多图输入
- 【新功能】引入LLM响应验证机制,通过 `validation_policy` 和 `response_validator` 确保响应内容符合预期,例如强制返回图片
- 【新功能】适配OpenRouter API,扩展LLM服务提供商支持,并添加OpenRouter特定请求头
- 【重构】将日志净化逻辑重构至 `log_sanitizer` 模块,提供统一的净化入口,并应用于NoneBot消息、LLM请求/响应日志
- 【修复】优化Gemini适配器,正确解析图片生成响应中的Base64图片数据,并更新模型能力注册表
2025-09-17 21:32:09 +08:00

155 lines
6.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import copy
from typing import Any
from nonebot.adapters import Message, MessageSegment
def _truncate_base64_string(value: str, threshold: int = 256) -> str:
"""如果字符串是超长的base64或data URI则截断它。"""
if not isinstance(value, str):
return value
prefixes = ("base64://", "data:image", "data:video", "data:audio")
if value.startswith(prefixes) and len(value) > threshold:
prefix = next((p for p in prefixes if value.startswith(p)), "base64")
return f"[{prefix}_data_omitted_len={len(value)}]"
return value
def _sanitize_nonebot_message(message: Message) -> Message:
"""净化nonebot.adapter.Message对象用于日志记录。"""
sanitized_message = copy.deepcopy(message)
for seg in sanitized_message:
seg: MessageSegment
if seg.type in ("image", "record", "video"):
file_info = seg.data.get("file", "")
if isinstance(file_info, str):
seg.data["file"] = _truncate_base64_string(file_info)
return sanitized_message
def _sanitize_openai_response(response_json: dict) -> dict:
"""净化OpenAI兼容API的响应体。"""
try:
sanitized_json = copy.deepcopy(response_json)
if "choices" in sanitized_json and isinstance(sanitized_json["choices"], list):
for choice in sanitized_json["choices"]:
if "message" in choice and isinstance(choice["message"], dict):
message = choice["message"]
if "images" in message and isinstance(message["images"], list):
for i, image_info in enumerate(message["images"]):
if "image_url" in image_info and isinstance(
image_info["image_url"], dict
):
url = image_info["image_url"].get("url", "")
message["images"][i]["image_url"]["url"] = (
_truncate_base64_string(url)
)
return sanitized_json
except Exception:
return response_json
def _sanitize_gemini_response(response_json: dict) -> dict:
"""净化Gemini API的响应体处理文本和图片生成两种格式。"""
try:
sanitized_json = copy.deepcopy(response_json)
def _process_candidates(candidates_list: list):
"""辅助函数,用于处理任何 candidates 列表。"""
if not isinstance(candidates_list, list):
return
for candidate in candidates_list:
if "content" in candidate and isinstance(candidate["content"], dict):
content = candidate["content"]
if "parts" in content and isinstance(content["parts"], list):
for i, part in enumerate(content["parts"]):
if "inlineData" in part and isinstance(
part["inlineData"], dict
):
data = part["inlineData"].get("data", "")
if isinstance(data, str) and len(data) > 256:
content["parts"][i]["inlineData"]["data"] = (
f"[base64_data_omitted_len={len(data)}]"
)
if "candidates" in sanitized_json:
_process_candidates(sanitized_json["candidates"])
if "image_generation" in sanitized_json and isinstance(
sanitized_json["image_generation"], dict
):
if "candidates" in sanitized_json["image_generation"]:
_process_candidates(sanitized_json["image_generation"]["candidates"])
return sanitized_json
except Exception:
return response_json
def _sanitize_gemini_request(body: dict) -> dict:
"""净化Gemini API的请求体进行结构转换和总结。"""
try:
sanitized_body = copy.deepcopy(body)
if "contents" in sanitized_body and isinstance(
sanitized_body["contents"], list
):
for content_item in sanitized_body["contents"]:
if "parts" in content_item and isinstance(content_item["parts"], list):
media_summary = []
new_parts = []
for part in content_item["parts"]:
if "inlineData" in part and isinstance(
part["inlineData"], dict
):
data = part["inlineData"].get("data")
if isinstance(data, str):
mime_type = part["inlineData"].get(
"mimeType", "unknown"
)
media_summary.append(f"{mime_type} ({len(data)} chars)")
continue
new_parts.append(part)
if media_summary:
summary_text = (
f"[多模态内容: {len(media_summary)}个文件 - "
f"{', '.join(media_summary)}]"
)
new_parts.insert(0, {"text": summary_text})
content_item["parts"] = new_parts
return sanitized_body
except Exception:
return body
def sanitize_for_logging(data: Any, context: str | None = None) -> Any:
"""
统一的日志净化入口。
Args:
data: 需要净化的数据 (dict, Message, etc.).
context: 净化场景的上下文标识,例如 'gemini_request', 'openai_response'.
Returns:
净化后的数据。
"""
if context == "nonebot_message":
if isinstance(data, Message):
return _sanitize_nonebot_message(data)
elif context == "openai_response":
if isinstance(data, dict):
return _sanitize_openai_response(data)
elif context == "gemini_response":
if isinstance(data, dict):
return _sanitize_gemini_response(data)
elif context == "gemini_request":
if isinstance(data, dict):
return _sanitize_gemini_request(data)
else:
if isinstance(data, str):
return _truncate_base64_string(data)
return data