mirror of
https://github.com/zhenxun-org/zhenxun_bot.git
synced 2025-12-15 14:22:55 +08:00
Some checks failed
检查bot是否运行正常 / bot check (push) Waiting to run
Sequential Lint and Type Check / ruff-call (push) Waiting to run
Sequential Lint and Type Check / pyright-call (push) Blocked by required conditions
Release Drafter / Update Release Draft (push) Waiting to run
Force Sync to Aliyun / sync (push) Waiting to run
Update Version / update-version (push) Waiting to run
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, javascript-typescript) (push) Has been cancelled
CodeQL Code Security Analysis / Analyze (${{ matrix.language }}) (none, python) (push) Has been cancelled
* ♻️ refactor(pydantic): 提取 Pydantic 兼容函数到独立模块 * ♻️ refactor!(llm): 重构LLM服务,引入现代化工具和执行器架构 🏗️ **架构变更** - 引入ToolProvider/ToolExecutable协议,取代ToolRegistry - 新增LLMToolExecutor,分离工具调用逻辑 - 新增BaseMemory抽象,解耦会话状态管理 🔄 **API重构** - 移除:analyze, analyze_multimodal, pipeline_chat - 新增:generate_structured, run_with_tools - 重构:chat, search, code变为无状态调用 🛠️ **工具系统** - 新增@function_tool装饰器 - 统一工具定义到ToolExecutable协议 - 移除MCP工具系统和mcp_tools.json --------- Co-authored-by: webjoin111 <455457521@qq.com>
516 lines
19 KiB
Python
516 lines
19 KiB
Python
"""
|
||
LLM 服务 - 会话客户端
|
||
|
||
提供一个有状态的、面向会话的 LLM 客户端,用于进行多轮对话和复杂交互。
|
||
"""
|
||
|
||
import copy
|
||
from dataclasses import dataclass, field
|
||
import json
|
||
from typing import Any, TypeVar
|
||
import uuid
|
||
|
||
from jinja2 import Environment
|
||
from nonebot.compat import type_validate_json
|
||
from nonebot_plugin_alconna.uniseg import UniMessage
|
||
from pydantic import BaseModel, ValidationError
|
||
|
||
from zhenxun.services.log import logger
|
||
from zhenxun.utils.pydantic_compat import model_copy, model_dump, model_json_schema
|
||
|
||
from .config import (
|
||
CommonOverrides,
|
||
LLMGenerationConfig,
|
||
)
|
||
from .config.providers import get_ai_config
|
||
from .manager import get_global_default_model_name, get_model_instance
|
||
from .memory import BaseMemory, InMemoryMemory
|
||
from .tools.manager import tool_provider_manager
|
||
from .types import (
|
||
EmbeddingTaskType,
|
||
LLMContentPart,
|
||
LLMErrorCode,
|
||
LLMException,
|
||
LLMMessage,
|
||
LLMResponse,
|
||
ModelName,
|
||
ResponseFormat,
|
||
ToolExecutable,
|
||
ToolProvider,
|
||
)
|
||
from .utils import normalize_to_llm_messages
|
||
|
||
T = TypeVar("T", bound=BaseModel)
|
||
|
||
jinja_env = Environment(autoescape=False)
|
||
|
||
|
||
@dataclass
|
||
class AIConfig:
|
||
"""AI配置类 - [重构后] 简化版本"""
|
||
|
||
model: ModelName = None
|
||
default_embedding_model: ModelName = None
|
||
default_preserve_media_in_history: bool = False
|
||
tool_providers: list[ToolProvider] = field(default_factory=list)
|
||
|
||
def __post_init__(self):
|
||
"""初始化后从配置中读取默认值"""
|
||
ai_config = get_ai_config()
|
||
if self.model is None:
|
||
self.model = ai_config.get("default_model_name")
|
||
|
||
|
||
class AI:
|
||
"""
|
||
统一的AI服务类 - 提供了带记忆的会话接口。
|
||
不再执行自主工具循环,当LLM返回工具调用时,会直接将请求返回给调用者。
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
session_id: str | None = None,
|
||
config: AIConfig | None = None,
|
||
memory: BaseMemory | None = None,
|
||
default_generation_config: LLMGenerationConfig | None = None,
|
||
):
|
||
"""
|
||
初始化AI服务
|
||
|
||
参数:
|
||
session_id: 唯一的会话ID,用于隔离记忆。
|
||
config: AI 配置.
|
||
memory: 可选的自定义记忆后端。如果为None,则使用默认的InMemoryMemory。
|
||
default_generation_config: (新增) 此AI实例的默认生成配置。
|
||
"""
|
||
self.session_id = session_id or str(uuid.uuid4())
|
||
self.config = config or AIConfig()
|
||
self.memory = memory or InMemoryMemory()
|
||
self.default_generation_config = (
|
||
default_generation_config or LLMGenerationConfig()
|
||
)
|
||
|
||
global_providers = tool_provider_manager._providers
|
||
config_providers = self.config.tool_providers
|
||
self._tool_providers = list(dict.fromkeys(global_providers + config_providers))
|
||
|
||
async def clear_history(self):
|
||
"""清空当前会话的历史记录。"""
|
||
await self.memory.clear_history(self.session_id)
|
||
logger.info(f"AI会话历史记录已清空 (session_id: {self.session_id})")
|
||
|
||
async def add_user_message_to_history(
|
||
self, message: str | LLMMessage | list[LLMContentPart]
|
||
):
|
||
"""
|
||
将一条用户消息标准化并添加到会话历史中。
|
||
|
||
参数:
|
||
message: 用户消息内容。
|
||
"""
|
||
user_message = await self._normalize_input_to_message(message)
|
||
await self.memory.add_message(self.session_id, user_message)
|
||
|
||
async def add_assistant_response_to_history(self, response_text: str):
|
||
"""
|
||
将助手的文本回复添加到会话历史中。
|
||
|
||
参数:
|
||
response_text: 助手的回复文本。
|
||
"""
|
||
assistant_message = LLMMessage.assistant_text_response(response_text)
|
||
await self.memory.add_message(self.session_id, assistant_message)
|
||
|
||
def _sanitize_message_for_history(self, message: LLMMessage) -> LLMMessage:
|
||
"""
|
||
净化用于存入历史记录的消息。
|
||
将非文本的多模态内容部分替换为文本占位符,以避免重复处理。
|
||
"""
|
||
if not isinstance(message.content, list):
|
||
return message
|
||
|
||
sanitized_message = copy.deepcopy(message)
|
||
content_list = sanitized_message.content
|
||
if not isinstance(content_list, list):
|
||
return sanitized_message
|
||
|
||
new_content_parts: list[LLMContentPart] = []
|
||
has_multimodal_content = False
|
||
|
||
for part in content_list:
|
||
if isinstance(part, LLMContentPart) and part.type == "text":
|
||
new_content_parts.append(part)
|
||
else:
|
||
has_multimodal_content = True
|
||
|
||
if has_multimodal_content:
|
||
placeholder = "[用户发送了媒体文件,内容已在首次分析时处理]"
|
||
text_part_found = False
|
||
for part in new_content_parts:
|
||
if part.type == "text":
|
||
part.text = f"{placeholder} {part.text or ''}".strip()
|
||
text_part_found = True
|
||
break
|
||
if not text_part_found:
|
||
new_content_parts.insert(0, LLMContentPart.text_part(placeholder))
|
||
|
||
sanitized_message.content = new_content_parts
|
||
return sanitized_message
|
||
|
||
async def _normalize_input_to_message(
|
||
self, message: str | UniMessage | LLMMessage | list[LLMContentPart]
|
||
) -> LLMMessage:
|
||
"""
|
||
[重构后] 内部辅助方法,将各种输入类型统一转换为单个 LLMMessage 对象。
|
||
它调用共享的工具函数并提取最后一条消息(通常是用户输入)。
|
||
"""
|
||
messages = await normalize_to_llm_messages(message)
|
||
|
||
if not messages:
|
||
raise LLMException(
|
||
"无法将输入标准化为有效的消息。", code=LLMErrorCode.CONFIGURATION_ERROR
|
||
)
|
||
return messages[-1]
|
||
|
||
async def chat(
|
||
self,
|
||
message: str | UniMessage | LLMMessage | list[LLMContentPart],
|
||
*,
|
||
model: ModelName = None,
|
||
instruction: str | None = None,
|
||
template_vars: dict[str, Any] | None = None,
|
||
preserve_media_in_history: bool | None = None,
|
||
tools: list[dict[str, Any] | str] | dict[str, ToolExecutable] | None = None,
|
||
tool_choice: str | dict[str, Any] | None = None,
|
||
config: LLMGenerationConfig | None = None,
|
||
) -> LLMResponse:
|
||
"""
|
||
核心交互方法,管理会话历史并执行单次LLM调用。
|
||
|
||
参数:
|
||
message: 用户输入的消息内容,支持文本、UniMessage、LLMMessage或
|
||
内容部分列表。
|
||
model: 要使用的模型名称,如果为None则使用配置中的默认模型。
|
||
instruction: 本次调用的特定系统指令,会与全局指令合并。
|
||
template_vars: 模板变量字典,用于在指令中进行变量替换。
|
||
preserve_media_in_history: 是否在历史记录中保留媒体内容,
|
||
None时使用默认配置。
|
||
tools: 可用的工具列表或工具字典,支持临时工具和预配置工具。
|
||
tool_choice: 工具选择策略,控制AI如何选择和使用工具。
|
||
config: 生成配置对象,用于覆盖默认的生成参数。
|
||
|
||
返回:
|
||
LLMResponse: 包含AI回复、工具调用请求、使用信息等的完整响应对象。
|
||
"""
|
||
current_message = await self._normalize_input_to_message(message)
|
||
|
||
messages_for_run = []
|
||
final_instruction = instruction
|
||
|
||
if final_instruction and template_vars:
|
||
try:
|
||
template = jinja_env.from_string(final_instruction)
|
||
final_instruction = template.render(**template_vars)
|
||
logger.debug(f"渲染后的系统指令: {final_instruction}")
|
||
except Exception as e:
|
||
logger.error(f"渲染系统指令模板失败: {e}", e=e)
|
||
|
||
if final_instruction:
|
||
messages_for_run.append(LLMMessage.system(final_instruction))
|
||
|
||
current_history = await self.memory.get_history(self.session_id)
|
||
messages_for_run.extend(current_history)
|
||
messages_for_run.append(current_message)
|
||
|
||
try:
|
||
resolved_model_name = self._resolve_model_name(model or self.config.model)
|
||
|
||
final_config = model_copy(self.default_generation_config, deep=True)
|
||
if config:
|
||
update_dict = model_dump(config, exclude_unset=True)
|
||
final_config = model_copy(final_config, update=update_dict)
|
||
|
||
ad_hoc_tools = None
|
||
if tools:
|
||
if isinstance(tools, dict):
|
||
ad_hoc_tools = tools
|
||
else:
|
||
ad_hoc_tools = await self._resolve_tools(tools)
|
||
|
||
async with await get_model_instance(
|
||
resolved_model_name,
|
||
override_config=final_config.to_dict(),
|
||
) as model_instance:
|
||
response = await model_instance.generate_response(
|
||
messages_for_run, tools=ad_hoc_tools, tool_choice=tool_choice
|
||
)
|
||
|
||
should_preserve = (
|
||
preserve_media_in_history
|
||
if preserve_media_in_history is not None
|
||
else self.config.default_preserve_media_in_history
|
||
)
|
||
user_msg_to_store = (
|
||
current_message
|
||
if should_preserve
|
||
else self._sanitize_message_for_history(current_message)
|
||
)
|
||
assistant_response_msg = LLMMessage.assistant_text_response(response.text)
|
||
if response.tool_calls:
|
||
assistant_response_msg = LLMMessage.assistant_tool_calls(
|
||
response.tool_calls, response.text
|
||
)
|
||
|
||
await self.memory.add_messages(
|
||
self.session_id, [user_msg_to_store, assistant_response_msg]
|
||
)
|
||
|
||
return response
|
||
|
||
except Exception as e:
|
||
raise (
|
||
e
|
||
if isinstance(e, LLMException)
|
||
else LLMException(f"聊天执行失败: {e}", cause=e)
|
||
)
|
||
|
||
async def code(
|
||
self,
|
||
prompt: str,
|
||
*,
|
||
model: ModelName = None,
|
||
timeout: int | None = None,
|
||
config: LLMGenerationConfig | None = None,
|
||
) -> LLMResponse:
|
||
"""
|
||
代码执行
|
||
|
||
参数:
|
||
prompt: 代码执行的提示词。
|
||
model: 要使用的模型名称。
|
||
timeout: 代码执行超时时间(秒)。
|
||
config: (可选) 覆盖默认的生成配置。
|
||
|
||
返回:
|
||
LLMResponse: 包含执行结果的完整响应对象。
|
||
"""
|
||
resolved_model = model or self.config.model or "Gemini/gemini-2.0-flash"
|
||
|
||
code_config = CommonOverrides.gemini_code_execution()
|
||
if timeout:
|
||
code_config.custom_params = code_config.custom_params or {}
|
||
code_config.custom_params["code_execution_timeout"] = timeout
|
||
|
||
if config:
|
||
update_dict = model_dump(config, exclude_unset=True)
|
||
code_config = model_copy(code_config, update=update_dict)
|
||
|
||
return await self.chat(prompt, model=resolved_model, config=code_config)
|
||
|
||
async def search(
|
||
self,
|
||
query: UniMessage,
|
||
*,
|
||
model: ModelName = None,
|
||
instruction: str = (
|
||
"你是一位强大的信息检索和整合专家。请利用可用的搜索工具,"
|
||
"根据用户的查询找到最相关的信息,并进行总结和回答。"
|
||
),
|
||
template_vars: dict[str, Any] | None = None,
|
||
config: LLMGenerationConfig | None = None,
|
||
) -> LLMResponse:
|
||
"""
|
||
信息搜索的便捷入口,原生支持多模态查询。
|
||
"""
|
||
logger.info("执行 'search' 任务...")
|
||
search_config = CommonOverrides.gemini_grounding()
|
||
|
||
if config:
|
||
update_dict = model_dump(config, exclude_unset=True)
|
||
search_config = model_copy(search_config, update=update_dict)
|
||
|
||
return await self.chat(
|
||
query,
|
||
model=model,
|
||
instruction=instruction,
|
||
template_vars=template_vars,
|
||
config=search_config,
|
||
)
|
||
|
||
async def generate_structured(
|
||
self,
|
||
message: str | LLMMessage | list[LLMContentPart],
|
||
response_model: type[T],
|
||
*,
|
||
model: ModelName = None,
|
||
instruction: str | None = None,
|
||
config: LLMGenerationConfig | None = None,
|
||
) -> T:
|
||
"""
|
||
生成结构化响应,并自动解析为指定的Pydantic模型。
|
||
|
||
参数:
|
||
message: 用户输入的消息内容,支持多种格式。
|
||
response_model: 用于解析和验证响应的Pydantic模型类。
|
||
model: 要使用的模型名称,如果为None则使用配置中的默认模型。
|
||
instruction: 本次调用的特定系统指令,会与JSON Schema指令合并。
|
||
config: 生成配置对象,用于覆盖默认的生成参数。
|
||
|
||
返回:
|
||
T: 解析后的Pydantic模型实例,类型为response_model指定的类型。
|
||
|
||
异常:
|
||
LLMException: 如果模型返回的不是有效的JSON或验证失败。
|
||
"""
|
||
try:
|
||
json_schema = model_json_schema(response_model)
|
||
except AttributeError:
|
||
json_schema = response_model.schema()
|
||
|
||
schema_str = json.dumps(json_schema, ensure_ascii=False, indent=2)
|
||
|
||
system_prompt = (
|
||
(f"{instruction}\n\n" if instruction else "")
|
||
+ "你必须严格按照以下 JSON Schema 格式进行响应。"
|
||
+ "不要包含任何额外的解释、注释或代码块标记,只返回纯粹的 JSON 对象。\n\n"
|
||
)
|
||
system_prompt += f"JSON Schema:\n```json\n{schema_str}\n```"
|
||
|
||
final_config = model_copy(config) if config else LLMGenerationConfig()
|
||
|
||
final_config.response_format = ResponseFormat.JSON
|
||
final_config.response_schema = json_schema
|
||
|
||
response = await self.chat(
|
||
message, model=model, instruction=system_prompt, config=final_config
|
||
)
|
||
|
||
try:
|
||
return type_validate_json(response_model, response.text)
|
||
except ValidationError as e:
|
||
logger.error(f"LLM结构化输出验证失败: {e}", e=e)
|
||
raise LLMException(
|
||
"LLM返回的JSON未能通过结构验证。",
|
||
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
||
details={"raw_response": response.text, "validation_error": str(e)},
|
||
cause=e,
|
||
)
|
||
except Exception as e:
|
||
logger.error(f"解析LLM结构化输出时发生未知错误: {e}", e=e)
|
||
raise LLMException(
|
||
"解析LLM的JSON输出时失败。",
|
||
code=LLMErrorCode.RESPONSE_PARSE_ERROR,
|
||
details={"raw_response": response.text},
|
||
cause=e,
|
||
)
|
||
|
||
def _resolve_model_name(self, model_name: ModelName) -> str:
|
||
"""解析模型名称"""
|
||
if model_name:
|
||
return model_name
|
||
|
||
default_model = get_global_default_model_name()
|
||
if default_model:
|
||
return default_model
|
||
|
||
raise LLMException(
|
||
"未指定模型名称且未设置全局默认模型",
|
||
code=LLMErrorCode.MODEL_NOT_FOUND,
|
||
)
|
||
|
||
async def embed(
|
||
self,
|
||
texts: list[str] | str,
|
||
*,
|
||
model: ModelName = None,
|
||
task_type: EmbeddingTaskType | str = EmbeddingTaskType.RETRIEVAL_DOCUMENT,
|
||
**kwargs: Any,
|
||
) -> list[list[float]]:
|
||
"""
|
||
生成文本嵌入向量,将文本转换为数值向量表示。
|
||
|
||
参数:
|
||
texts: 要生成嵌入的文本内容,支持单个字符串或字符串列表。
|
||
model: 嵌入模型名称,如果为None则使用配置中的默认嵌入模型。
|
||
task_type: 嵌入任务类型,影响向量的优化方向(如检索、分类等)。
|
||
**kwargs: 传递给嵌入模型的额外参数。
|
||
|
||
返回:
|
||
list[list[float]]: 文本对应的嵌入向量列表,每个向量为浮点数列表。
|
||
|
||
异常:
|
||
LLMException: 如果嵌入生成失败或模型配置错误。
|
||
"""
|
||
if isinstance(texts, str):
|
||
texts = [texts]
|
||
if not texts:
|
||
return []
|
||
|
||
try:
|
||
resolved_model_str = (
|
||
model or self.config.default_embedding_model or self.config.model
|
||
)
|
||
if not resolved_model_str:
|
||
raise LLMException(
|
||
"使用 embed 功能时必须指定嵌入模型名称,"
|
||
"或在 AIConfig 中配置 default_embedding_model。",
|
||
code=LLMErrorCode.MODEL_NOT_FOUND,
|
||
)
|
||
resolved_model_str = self._resolve_model_name(resolved_model_str)
|
||
|
||
async with await get_model_instance(
|
||
resolved_model_str,
|
||
override_config=None,
|
||
) as embedding_model_instance:
|
||
return await embedding_model_instance.generate_embeddings(
|
||
texts, task_type=task_type, **kwargs
|
||
)
|
||
except LLMException:
|
||
raise
|
||
except Exception as e:
|
||
logger.error(f"文本嵌入失败: {e}", e=e)
|
||
raise LLMException(
|
||
f"文本嵌入失败: {e}", code=LLMErrorCode.EMBEDDING_FAILED, cause=e
|
||
)
|
||
|
||
async def _resolve_tools(
|
||
self,
|
||
tool_configs: list[Any],
|
||
) -> dict[str, ToolExecutable]:
|
||
"""
|
||
使用注入的 ToolProvider 异步解析 ad-hoc(临时)工具配置。
|
||
返回一个从工具名称到可执行对象的字典。
|
||
"""
|
||
resolved: dict[str, ToolExecutable] = {}
|
||
|
||
for config in tool_configs:
|
||
name = config if isinstance(config, str) else config.get("name")
|
||
if not name:
|
||
raise LLMException(
|
||
"工具配置字典必须包含 'name' 字段。",
|
||
code=LLMErrorCode.CONFIGURATION_ERROR,
|
||
)
|
||
|
||
if isinstance(config, str):
|
||
config_dict = {"name": name, "type": "function"}
|
||
elif isinstance(config, dict):
|
||
config_dict = config
|
||
else:
|
||
raise TypeError(f"不支持的工具配置类型: {type(config)}")
|
||
|
||
executable = None
|
||
for provider in self._tool_providers:
|
||
executable = await provider.get_tool_executable(name, config_dict)
|
||
if executable:
|
||
break
|
||
|
||
if not executable:
|
||
raise LLMException(
|
||
f"没有为 ad-hoc 工具 '{name}' 找到合适的提供者。",
|
||
code=LLMErrorCode.CONFIGURATION_ERROR,
|
||
)
|
||
|
||
resolved[name] = executable
|
||
|
||
return resolved
|